The four-loop DRED gauge β-function and fermion mass anomalous dimension for general gauge groups

Ian Jack and D.R. Timothy Jones
Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, U.K.
E-mail: dij@liverpool.ac.uk, drtj@liverpool.ac.uk

Philipp Kant and Luminita Mihaila
Institut für Theoretische Teilchenphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
E-mail: kantp@particle.uni-karlsruhe.de, Euminita@particle.uni-karlsruhe.de

Abstract: We present four-loop results for the gauge β-function and the fermion mass anomalous dimension for a gauge theory with a general gauge group and a multiplet of fermions transforming according to an arbitrary representation, calculated using the dimensional reduction scheme. In the special case of a supersymmetric theory we confirm previous calculations of both the gauge β-function and the gaugino mass β-function.

Keywords: Renormalization Group, Renormalization Regularization and Renormalons, Supersymmetric gauge theory, QCD.

Contents

1. Introduction 1
2. Gauge theory with fermions 2
3. The ε-scalar self coupling 4
3.1 The case $\mathcal{G}=\operatorname{SU}(N)$ 回
3.1.1 The fermion contribution 9
3.2 The general case 11
4. The general four-loop results 12
4.1 The β function and anomalous dimension 19
5. The four-loop supersymmetric case 27
6. Discussion 28
A. Group theory 28
B. The groups $\mathrm{SO}(N)$ and $\operatorname{Sp}(N)$ 29
B. 1 The case $\mathcal{G}=\mathrm{SO}(N)$ 30
B.1.1 The fermion contribution 33
B. 2 The case $\mathcal{G}=\operatorname{Sp}(N)$ 34
B.2.1 The fermion contribution 35

1. Introduction

In recent papers some of us presented calculations of the QCD β-function, β_{s}, and the fermion mass anomalous dimension (or mass β-function), γ_{m} through three loops [1] and four loops [2] using the DRED (or $\overline{\mathrm{DR}}$) scheme, which is based on regularisation by dimensional reduction [3, 因]. An interesting feature of these calculations is the dependence of β_{s} on the evanescent couplings: ε-scalar interactions that do not renormalise like the gauge coupling. At three loops β_{s} depends on the ε-scalar Yukawa coupling, and at four loops it also depends on the ε-scalar quartic interaction. The first explicit calculations of the one loop corrections to this quartic interaction appeared in ref. [5] (for a particular $\mathrm{SU}(2)$ model), and in ref. [2] (for QCD). Here we generalise the calculation to $\mathrm{SU}(N), \mathrm{SO}(N)$ and $\mathrm{Sp}(N)$. This involves some quite interesting and (relatively) little known group theory. We also similarly generalise the result from ref. [2] for the ε-scalar Yukawa coupling.

Of course it is the $\mathrm{SU}(3)$ case described in the previous papers which is most obviously currently useful, but the general result is also of interest, for possible future applications to other symmetry groups, and if only as a further test of the validity of the DRED procedure. Our confidence in this is reinforced by once again comparing our results for the special case of supersymmetry (when there is a single fermion multiplet in the adjoint representation). The result for β_{s} for a renormalisable $\mathcal{N}=1$ supersymmetric theory was given through four loops in ref. [6], the derivation being based on the completion of a construction of the coupling constant redefinition connecting the DRED scheme to the NSVZ scheme developed in ref. [7]. Here we not only verify this result through four loops (in the special case of a theory with no superpotential) but also we verify the result for the gaugino β-function through the same order. This is of interest because of course the gaugino mass breaks supersymmetry, and the issues of regularisation and renormalisation of softly-broken supersymmetric theories present additional subtleties. The exact formula for the gaugino β-function (expressing it in terms of β_{s}), as first derived in ref. [8] (inspired by an observation by Hisano and Shifman in ref. [9]) relied heavily on the spurion formalism, as developed in particular by Yamada [10]; it is reassuring to find that the relationship between the two β-functions indeed holds in an explicit DRED calculation.

In section 2 we review the renormalisation procedure for a gauge theory using DRED; then in section 3 we describe the one loop renormalisation of the ε-scalar self-interaction. We first give results for the $\operatorname{SU}(N)$ case, explaining how to reduce to the special cases $N=2$ and $N=3$. We then generalise to expressions valid for an arbitrary group.

In section 4 we give the full four-loop results for β_{s} and γ_{m} for the general case, and in section 国 we reduce to the special case of supersymmetry for comparison with earlier results, as described above. Finally in the appendices we explain some of the group theory involved in the calculations and give explicit results for $\mathrm{SO}(N)$ and $\mathrm{Sp}(N)$ for the one-loop ε-scalar quartic interaction β-functions.

2. Gauge theory with fermions

Consider a non-abelian gauge theory with gauge fields W_{μ}^{a} and a multiplet of twocomponent fermions $\psi_{\alpha}^{A}(x)$ transforming according to a representation R of the gauge group \mathcal{G}.

The Lagrangian density (in terms of bare fields) is

$$
\begin{equation*}
L_{B}=-\frac{1}{4} G_{\mu \nu}^{2}-\frac{1}{2 \alpha}\left(\partial^{\mu} W_{\mu}\right)^{2}+C^{a *} \partial^{\mu} D_{\mu}^{a b} C^{b}+i \bar{\psi}_{\dot{\alpha} A} \bar{\sigma}^{\mu \dot{\alpha} \alpha}\left(D_{\mu}\right)^{A}{ }_{B} \psi_{\alpha}^{B} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{\mu \nu}^{a}=\partial_{\mu} W_{\nu}^{a}-\partial_{\nu} W_{\mu}^{a}+g f^{a b c} W_{\mu}^{b} W_{\nu}^{c} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(D_{\mu}\right)^{A}{ }_{B}=\delta^{A}{ }_{B} \partial_{\mu}-i g\left(R^{a}\right)^{A}{ }_{B} W_{\mu}^{a} \tag{2.3}
\end{equation*}
$$

and the usual covariant gauge fixing and ghost $\left(C, C^{*}\right)$ terms have been introduced. As usual $\bar{\sigma}^{\mu} \equiv(I,-\boldsymbol{\sigma})$ where $\boldsymbol{\sigma}$ are the Pauli matrices.

For the case when the theory admits a gauge invariant fermion mass term we will have $L_{B} \rightarrow L_{B}+L_{B}^{m}$, where

$$
\begin{equation*}
L_{B}^{m}=\frac{1}{2} m_{A B} \psi^{\alpha A} \psi_{\alpha}^{B}+\text { c.c. } \tag{2.4}
\end{equation*}
$$

Dimensional reduction amounts to imposing that all field variables depend only on a subset of the total number of space-time dimensions; in this case d out of 4 where $d=4-2 \epsilon$. We can then make the decomposition

$$
\begin{equation*}
W_{\mu}^{a}\left(x^{j}\right)=\left\{W_{i}^{a}\left(x^{j}\right), W_{\sigma}^{a}\left(x^{j}\right)\right\} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{i}^{i}=\delta^{j}{ }_{j}=d \quad \text { and } \quad \delta_{\sigma \sigma}=2 \epsilon . \tag{2.6}
\end{equation*}
$$

It is then easy to show that

$$
\begin{equation*}
L_{B}=L_{B}^{d}+L_{B}^{\epsilon} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{B}^{d}=-\frac{1}{4} G_{i j}^{2}-\frac{1}{2 \alpha}\left(\partial^{i} W_{i}\right)^{2}+C^{*} \partial^{i} D_{i} C+i \bar{\psi} \bar{\sigma}^{i} D_{i} \psi \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{B}^{\epsilon}=\frac{1}{2}\left(D_{i} W_{\sigma}\right)^{2}-g \bar{\psi} \bar{\sigma}_{\sigma} R^{a} \psi W_{\sigma}^{a}-\frac{1}{4} g^{2} f^{a b c} f^{a d e} W_{\sigma}^{b} W_{\sigma^{\prime}}^{c} W_{\sigma}^{d} W_{\sigma^{\prime}}^{e} \tag{2.9}
\end{equation*}
$$

Conventional dimensional regularisation (DREG) amounts to using eq. (2.8) and discarding eq. (2.9).

We would now like to rewrite eq. (2.8) and eq. (2.9) in terms of renormalised quantities. It is clear, however, from the dimensionally reduced form of the gauge transformations:

$$
\begin{align*}
\delta W_{i}^{a} & =\partial_{i} \Lambda^{a}+g f^{a b c} W_{i}^{b} \Lambda^{c} \tag{2.10a}\\
\delta W_{\sigma}^{a} & =g f^{a b c} W_{\sigma}^{b} \Lambda^{c} \tag{2.10b}\\
\delta \psi^{A} & =i g\left(R^{a}\right)_{B}^{A} \psi^{B} \Lambda^{a} \tag{2.10c}
\end{align*}
$$

that each term in eq. (2.9) is separately invariant under gauge transformations. The $W_{\sigma^{-}}$ fields behave exactly like scalar fields, and are hence known as ε-scalars. There is therefore no reason to expect the $\bar{\psi} \psi W_{\sigma}$ vertex to renormalise in the same way as the $\bar{\psi} \psi W_{i}$ vertex (except in the case of supersymmetric theories). In the case of the quartic ε-scalar interaction it is evident that more than one such coupling is permitted by eq. (2.10b). In other words, we cannot in general expect the $f-f$ tensor structure present in eq. (2.9) to be preserved under renormalisation. This is clear from the abelian case, where there is no quartic interaction in L_{B}^{ϵ} but there is a divergent graph at one loop from a fermion loop.

We are therefore led to consider the following expressions ${ }^{1}$ for renormalised quantities

[^0]L^{d} and L^{ε} :
\[

$$
\begin{align*}
L^{d}= & -\frac{1}{4} Z^{W W}\left(\partial_{i} W_{j}-\partial_{j} W_{i}\right)^{2}-\frac{1}{2 \alpha}\left(\partial^{i} W_{i}\right)^{2} \\
& -Z^{W W W} g f^{a b c} \partial_{i} W_{j}^{a} W^{b i} W^{c j}-\frac{1}{4} Z^{4 W} g^{2} f^{a b c} f^{a d e} W_{i}^{b} W_{j}^{c} W^{d i} W^{e j} \\
& +Z^{C C} \partial^{i} C^{*} \partial_{i} C+Z^{C C W} g f^{a b c} \partial^{i} C^{a *} W_{i}^{b} C^{c} \\
& +Z^{\psi \psi} i \bar{\psi} \bar{\sigma}^{i} \partial_{i} \psi+Z^{\psi \psi W} g \bar{\psi} R^{a} \bar{\sigma}^{i} \psi W_{i}^{a} \tag{2.11}
\end{align*}
$$
\]

and

$$
\begin{align*}
L^{\varepsilon}= & \frac{1}{2} Z^{\varepsilon \varepsilon}\left(\partial_{i} W_{\sigma}\right)^{2}+Z^{\varepsilon \varepsilon W} g f^{a b c} \partial_{i} W_{\sigma}^{a} W^{b i} W_{\sigma}^{c} \\
& +Z^{\varepsilon \varepsilon W W} g^{2} f^{a b c} f^{a d e} W_{i}^{b} W_{\sigma}^{c} W^{d i} W_{\sigma}^{e}-Z^{\psi \psi \varepsilon} g_{e} \bar{\psi} R^{a} \bar{\sigma}_{\sigma} \psi W_{\sigma}^{a} \\
& -\frac{1}{4} \sum_{r=1}^{p} Z_{r}^{4 \varepsilon} \lambda_{r} H_{r}^{a b c d} W_{\sigma}^{a} W_{\sigma^{\prime}}^{c} W_{\sigma}^{b} W_{\sigma^{\prime}}^{d} . \tag{2.12}
\end{align*}
$$

In the case when we have a fermion mass term we would also have

$$
\begin{equation*}
L^{m}=\frac{1}{2} Z_{m} Z^{\psi \psi} m \psi^{\alpha} \psi_{\alpha}+\text { c.c. } \tag{2.13}
\end{equation*}
$$

Eq. (2.11) is the usual expression for the Lagrangian in terms of renormalised parameters. In eq. (2.12) we have introduced a "Yukawa" coupling g_{e} and a set of p quartic couplings λ_{r}. (Strictly speaking, eq. (2.12) should also have a mass term for the ε-scalars; but since this mass term does not affect β_{s} or γ_{m} we omit it here.) The number p is given by the number of independent rank four tensors $H^{a b c d}$ which are non-vanishing when symmetrised with respect to $(a b)$ and $(c d)$ interchange. In the next section we discuss the quartic vertex and its renormalisation in more detail.

3. The ε-scalar self coupling

Let us discuss the structure of the quartic ε-scalar couplings for an arbitrary gauge group. These interactions are invariant under the symmetry $\mathcal{G} \otimes O(2 \epsilon)$, where only the \mathcal{G} is gauged. The renormalisation properties of scalar theories with invariances of the type $G_{1} \otimes G_{2}$ have been studied in considerable detail, for example $O(m) \otimes O(n)$ in the theory of critical phenomena and $\mathrm{U}(m) \otimes \mathrm{U}(n)$ in the context of QCD. In these cases, however, the scalars transform as vector (fundamental) representations of the gauge group factors whereas for us they transform as adjoints.

This raises an interesting group theory question: how many independent couplings are there for a given gauge group \mathcal{G} ? Evidently the question of how many independent tensors of the form $K^{a b c d}$ there are is the question of how many times the singlet representation occurs in the reduction to irreducible representations of the product of four adjoint representations. (Neither this question, nor the obvious generalisation to n-tensors $K^{a_{1} \cdots a_{n}}$ has been much studied in the literature; an exception being the classic work of Cvitanovic [11], to which we will return presently). The set of tensors relevant to our problem is the subset of such

n	$N=2$	$N=3$	$N=4$	$N=5$	$N=6$
2	1	1	1	1	1
3	1	2	2	2	2
4	3	8	9	9	9
5	\cdots	\cdots	\cdots	\cdots	\cdots

Table 1: Basis dimensionality for n-tensors in $\mathrm{SU}(N)$.
tensors $H^{a b c d}$ which is invariant with respect to (a, b) and (c, d) exchange, because of the $O(2 \epsilon)$ invariance.

If we have an irreducible basis of dimensionality $\gamma(n)$ for the n-tensors of the form

$$
\begin{equation*}
K_{\alpha}^{a_{1} \cdots a_{n}}, \quad 1 \leq \alpha \leq \gamma(n) \tag{3.1}
\end{equation*}
$$

then a general n-tensor $K^{a_{1} \cdots a_{n}}$ can be expressed in terms of the basis as

$$
\begin{equation*}
K^{a_{1} \cdots a_{n}}=x_{\beta} K_{\beta}^{a_{1} \cdots a_{n}} \tag{3.2}
\end{equation*}
$$

where x_{β} are determined by the equation

$$
\begin{equation*}
Q_{\alpha \beta}^{n} x_{\beta}=y_{\alpha}=K^{a_{1} \cdots a_{n}} K_{\alpha}^{a_{1} \cdots a_{n}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{\alpha \beta}^{n}=K_{\alpha}^{a_{1} \cdots a_{n}} K_{\beta}^{a_{1} \cdots a_{n}} . \tag{3.4}
\end{equation*}
$$

Thus construction of the Q^{n}-matrix permits reduction of an arbitrary n-tensor to the basis.

3.1 The case $\mathcal{G}=\mathrm{SU}(N)$

The fundamental representation T^{a} of the generators R^{a} of $\mathrm{SU}(N)$ satisfies

$$
\begin{align*}
{\left[T^{a}, T^{b}\right] } & =i f^{a b c} T^{c} \\
\left\{T^{a}, T^{b}\right\} & =d^{a b c} T^{c}+\frac{b}{N} \delta^{a b} \\
\operatorname{Tr}\left(T^{a} T^{b}\right) & =\frac{b}{2} \delta^{a b} \tag{3.5}
\end{align*}
$$

where b is a constant. For the rest of this section we will adopt the usual convention whereby $b=1$.

In table 1 we present some results for the dimensionality $\gamma(n)$ for $\operatorname{SU}(N)$ as a function of N. It is interesting that Cvitanovic [11] remarks that a formula for the dimensionality of a basis (in general over-complete) is provided by the subfactorial $\beta(n)$ where

$$
\begin{equation*}
\beta(n)=n!\left(1-\frac{1}{1!}+\frac{1}{2!}+\ldots(-1)^{n} \frac{1}{n!}\right) \tag{3.6}
\end{equation*}
$$

It appears that for sufficiently large N we have $\gamma(n)=\beta(n)$.

A natural choice for the basis for the case $n=4$ when $N \geq 4$ is given by ${ }^{2}$

$$
\begin{array}{lll}
K_{1}=\delta^{a b} \delta^{c d} & K_{4}=d^{a b e} d^{c d e} & K_{7}=d^{a b e} f^{c d e} \\
K_{2}=\delta^{a c} \delta^{b d} & K_{5}=d^{a c e} d^{b d e} & K_{8}=d^{a c e} f^{b d e} \\
K_{3}=\delta^{a d} \delta^{b c} & K_{6}=d^{a d e} d^{b d e} & K_{9}=d^{a d e} f^{b c e} . \tag{3.7}
\end{array}
$$

The reduction of the basis to $\gamma=8$ in the case $\mathrm{SU}(3)$ is achieved via the relation [12, 13]

$$
\begin{equation*}
K_{4}+K_{5}+K_{6}=\frac{1}{3}\left(K_{1}+K_{2}+K_{3}\right) \tag{3.8}
\end{equation*}
$$

which is not valid for $N \geq 4$. The corresponding identity for general N reduces a symmetrised $(N+1)$-tensor consisting of $N-1 d$-tensors; for an elegant derivation see ref. 14].

For the ε-scalar interactions a possible basis for $N \geq 4$ is therefore

$$
\begin{align*}
H_{1} & =\frac{1}{2} K_{1} \\
H_{2} & =\frac{1}{2}\left(K_{2}+K_{3}\right) \\
H_{3} & =\frac{1}{2} K_{4} \\
H_{4} & =\frac{1}{2}\left(K_{5}+K_{6}\right) . \tag{3.9}
\end{align*}
$$

Note that the absence of a $d-f$ type term from the basis follows from the identity

$$
\begin{equation*}
K_{8}+K_{9}=-f^{a b e} d^{c d e} \tag{3.10}
\end{equation*}
$$

Let us introduce the couplings

$$
\begin{equation*}
\alpha_{s}=\frac{g^{2}}{4 \pi}, \quad \alpha_{e}=\frac{g_{e}^{2}}{4 \pi} \quad \text { and } \quad u_{r}=\frac{\lambda_{r}}{4 \pi}, \tag{3.11}
\end{equation*}
$$

and define the corresponding β functions for the u_{r} couplings

$$
\begin{equation*}
\beta_{u_{r}}=\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \frac{u_{r}}{\pi} . \tag{3.12}
\end{equation*}
$$

If we write (with the normalisation of eq. (2.12))

$$
\begin{equation*}
\lambda_{r} H_{r}^{a b c d} \rightarrow \sum_{r=1}^{4} 4 \pi u_{r} H_{r} \tag{3.13}
\end{equation*}
$$

[^1]then the β-functions for the u_{r} couplings are given at one loop by ${ }^{3}$
\[

$$
\begin{align*}
& \beta_{u_{1}}=8 u_{1}^{2}+4 N^{2} u_{1} u_{2}+12 u_{2}^{2}+\frac{4\left(N^{2}-4\right)}{N}\left\{u_{1} u_{3}+u_{1} u_{4}+2 u_{2} u_{4}+\frac{1}{N}\left(u_{3}^{2}+2 u_{3} u_{4}+3 u_{4}^{2}\right)\right\} \\
& \beta_{u_{2}}=12 u_{1} u_{2}+\left(2 N^{2}+6\right) u_{2}^{2}+\frac{2\left(N^{2}-4\right)}{N}\left\{2 u_{2} u_{3}+2 u_{2} u_{4}+\frac{1}{N}\left(u_{3}^{2}+6 u_{3} u_{4}+3 u_{4}^{2}\right)\right\} \\
& \beta_{u_{3}}=12 u_{1} u_{3}+4 u_{2} u_{3}+16 u_{2} u_{4}+\frac{1}{N}\left\{\left(3 N^{2}-40\right) u_{3}^{2}+6\left(N^{2}-12\right) u_{3} u_{4}+\left(7 N^{2}-96\right) u_{4}^{2}\right\} \\
& \beta_{u_{4}}=12 u_{1} u_{4}+8 u_{2} u_{3}+12 u_{2} u_{4}+\frac{1}{N}\left\{4\left(N^{2}-14\right) u_{4}^{2}+4\left(N^{2}-18\right) u_{3} u_{4}-8 u_{3}^{2}\right\} \tag{3.14}
\end{align*}
$$
\]

where for the moment we suppress contributions from the gauge coupling α_{s} and ε-scalar Yukawa coupling α_{e}.

Because of the nature of the bare theory, and to explore more easily the supersymmetric case, it is natural to consider alternative bases, for example:

$$
\begin{align*}
& \bar{H}_{1}=H_{1} \\
& \bar{H}_{2}=H_{2} \\
& \bar{H}_{3}=\frac{1}{2}\left(f^{a c e} f^{b d e}+f^{a d e} f^{b c e}\right) \\
& \bar{H}_{4}=\frac{1}{2}\left(f^{a e f} f^{b f g} f^{c g h} f^{d h e}+f^{a e f} f^{b f g} f^{d g h} f^{c h e}\right) \tag{3.15}
\end{align*}
$$

We shall also see that it is this kind of basis (avoiding use of the d-tensor) that generalises most easily to other groups.

We have

$$
\begin{align*}
\bar{H}_{3} & =\frac{4}{N} H_{1}-\frac{2}{N} H_{2}+2 H_{3}-H_{4} \\
\bar{H}_{4} & =2 H_{1}+H_{2}+\frac{N}{2} H_{3} \tag{3.16}
\end{align*}
$$

so that if we write

$$
\begin{equation*}
\sum_{r=1}^{4} u_{r} H_{r}=\sum_{r=1}^{4} v_{r} \bar{H}_{r} \tag{3.17}
\end{equation*}
$$

then

$$
\begin{align*}
v_{1} & =u_{1}-\frac{4}{N}\left(u_{3}+u_{4}\right) \\
v_{2} & =u_{2}-\frac{2}{N} u_{3}-\frac{6}{N} u_{4} \\
v_{3} & =-u_{4} \\
v_{4} & =\frac{2}{N} u_{3}+\frac{4}{N} u_{4} \tag{3.18}
\end{align*}
$$

[^2]The β-functions for the v_{r} couplings are given at one loop by

$$
\begin{align*}
\beta_{v_{1}} & =8 v_{1}^{2}+4 N^{2} v_{1} v_{2}+12 v_{2}^{2}-4 N v_{1} v_{3}+6 N^{2} v_{1} v_{4}+8 N v_{2} v_{3} \\
& +8 N v_{3} v_{4}+8 N^{2} v_{2} v_{4}+10 N^{2} v_{4}^{2}-12 N v_{1} \alpha_{s} \\
\beta_{v_{2}} & =12 v_{1} v_{2}+\left(2 N^{2}+6\right) v_{2}^{2}-4 N v_{2} v_{3}+6 N^{2} v_{2} v_{4}-4 N v_{3} v_{4}+3 N^{2} v_{4}^{2}-12 N v_{2} \alpha_{s} \\
\beta_{v_{3}} & =4 N v_{3}^{2}+12 v_{1} v_{3}-4 v_{2} v_{3}-4 N v_{2} v_{4}+\left(2 N^{2}+8\right) v_{3} v_{4}-2 N v_{4}^{2}-12 N v_{3} \alpha_{s} \\
\beta_{v_{4}} & =\left(\frac{3}{2} N^{2}+16\right) v_{4}^{2}+12 v_{1} v_{4}+20 v_{2} v_{4}-2 v_{3}^{2}-2 N v_{3} v_{4}-12 N v_{4} \alpha_{s}+6 \alpha_{s}^{2} \tag{3.19}
\end{align*}
$$

where we have now included the gauge coupling contribution (note that the α_{s}^{2} terms contribute only to $\beta_{v_{4}}$).

Another choice of basis (in fact the one employed in ref. [1]) is

$$
\begin{align*}
\tilde{H}_{1} & =\delta^{a c} \delta^{b d}+\delta^{a d} \delta^{b c}+\delta^{a b} \delta^{c d} \\
\tilde{H}_{2} & =\frac{1}{2}\left(\delta^{a c} \delta^{b d}+\delta^{a d} \delta^{b c}\right)-\delta^{a b} \delta^{c d} \\
\tilde{H}_{3} & =\bar{H}_{3} \\
\tilde{H}_{4} & =\bar{H}_{4} \tag{3.20}
\end{align*}
$$

so that

$$
\begin{align*}
\tilde{H}_{1} & =2\left(\bar{H}_{1}+\bar{H}_{2}\right) \\
\tilde{H}_{2} & =\bar{H}_{2}-2 \bar{H}_{1} \tag{3.21}
\end{align*}
$$

and if we write

$$
\begin{equation*}
\sum_{r=1}^{4} v_{r} \bar{H}_{r}=\sum_{r=1}^{4} w_{r} \tilde{H}_{r} \tag{3.22}
\end{equation*}
$$

then

$$
\begin{align*}
w_{1} & =\frac{1}{6}\left(v_{1}+2 v_{2}\right) \\
w_{2} & =\frac{1}{3}\left(-v_{1}+v_{2}\right) \\
w_{3} & =v_{3} \\
w_{4} & =v_{4} \tag{3.23}
\end{align*}
$$

In this basis the β-functions become

$$
\begin{align*}
\beta_{w_{1}}= & \frac{1}{3}\left[\left(112+16 N^{2}\right) w_{1}^{2}+\left(4 N^{2}-8\right) w_{1} w_{2}-4 N w_{1} w_{3}+26 N^{2} w_{1} w_{4}\right. \\
& \left.-\left(2 N^{2}-4\right) w_{2}^{2}+4 N w_{2} w_{3}+4 N^{2} w_{2} w_{4}+8 N^{2} w_{4}^{2}\right]-12 N w_{1} \alpha_{s} \\
\beta_{w_{2}}= & \frac{1}{3}\left[-8\left(N^{2}+1\right) w_{1}^{2}+16\left(N^{2}+1\right) w_{1} w_{2}-16 N w_{1} w_{3}-16 N^{2} w_{1} w_{4}\right. \\
& \left.+\left(10 N^{2}-62\right) w_{2}^{2}-20 N w_{2} w_{3}+10 N^{2} w_{2} w_{4}-12 N w_{3} w_{4}-7 N^{2} w_{4}^{2}\right]-12 N w_{2} \alpha_{s} \\
\beta_{w_{3}}= & 16 w_{1} w_{3}-8 N w_{1} w_{4}-28 w_{2} w_{3}-4 N w_{2} w_{4}+4 N w_{3}^{2} \\
& +\left(2 N^{2}+8\right) w_{3} w_{4}-2 N w_{4}^{2}-12 N w_{3} \alpha_{s} \\
\beta_{w_{4}}= & 64 w_{1} w_{4}-4 w_{2} w_{4}-2 w_{3}^{2}-2 N w_{3} w_{4}+\left(\frac{3}{2} N^{2}+16\right) w_{4}^{2}-12 N w_{4} \alpha_{s}+6 \alpha_{s}^{2} . \tag{3.24}
\end{align*}
$$

For the rest of the paper we will use the v-basis; as already remarked the use of $\bar{H}_{3,4}$ means the generalisation to other groups can be carried out easily.

3.1.1 The fermion contribution

The contribution of the fermion loop to the scalar anomalous dimension results in a contribution of

$$
\begin{equation*}
\Delta \beta_{u_{i}}=8 n_{f} I_{2}(R) \alpha_{e} u_{i} \tag{3.25}
\end{equation*}
$$

to each β-function in eq. (3.14), with corresponding contributions to eq. (3.19) and eq. (3.24).

In eq. (3.25) and subsequently we follow the following convention: our fermion representation consists of n_{f} sets of Dirac fermions or $2 n_{f}$ sets of two-component fermions, in irreducible representations with identical Casimirs; and the whole representation must of course be anomaly free. We will pay particular attention to the case of an adjoint representation with $n_{f}=\frac{1}{2}$, which is supersymmetric, and to the case of n_{f} flavours, that is n_{f} sets of fundamental two component fermions with n_{f} sets of anti-fundamental two component fermions, which is QCD. For the definition of $I_{2}(R)$ and more details on group theoretic considerations see appendix A.

The 1PI fermion box diagram makes a contribution to the β-functions (appropriately normalised) of the form

$$
\begin{align*}
\bar{H}_{i} \Delta \beta_{v_{i}} & =-4 n_{f} \alpha_{e}^{2}\left[\operatorname{Tr}\left(R^{a} R^{b} R^{c} R^{d}\right)+\operatorname{Tr}\left(R^{a} R^{b} R^{d} R^{c}\right)+\operatorname{Tr}\left(R^{a} R^{d} R^{c} R^{b}\right)\right. \\
& \left.+\operatorname{Tr}\left(R^{a} R^{c} R^{d} R^{b}\right)-\operatorname{Tr}\left(R^{a} R^{d} R^{b} R^{c}\right)-\operatorname{Tr}\left(R^{a} R^{c} R^{b} R^{d}\right)\right] . \tag{3.26}
\end{align*}
$$

For a general representation this is not easily expressed in terms of one of our choice of bases. In the special case of an adjoint representation (with $n_{f}=\frac{1}{2}$), we find that

$$
\begin{equation*}
\bar{H}_{i} \Delta \beta_{v_{i}}=\alpha_{e}^{2}\left(-2 N \bar{H}_{3}-4 \bar{H}_{4}\right) \tag{3.27}
\end{equation*}
$$

so that the complete set of β-functions for the case of an $\operatorname{SU}(N)$ gauge theory with an adjoint fermion multiplet is:

$$
\begin{align*}
\beta_{v_{1}}= & 8 v_{1}^{2}+4 N^{2} v_{1} v_{2}+12 v_{2}^{2}-4 N v_{1} v_{3}+6 N^{2} v_{1} v_{4}+8 N v_{2} v_{3} \\
& +8 N v_{3} v_{4}+8 N^{2} v_{2} v_{4}+10 N^{2} v_{4}^{2}-12 N v_{1} \alpha_{s}+4 N v_{1} \alpha_{e} \\
\beta_{v_{2}}= & 12 v_{1} v_{2}+\left(2 N^{2}+6\right) v_{2}^{2}-4 N v_{2} v_{3}+6 N^{2} v_{2} v_{4} \\
& -4 N v_{3} v_{4}+3 N^{2} v_{4}^{2}-12 N v_{2} \alpha_{s}+4 N v_{2} \alpha_{e} \\
\beta_{v_{3}}= & 4 N v_{3}^{2}+12 v_{1} v_{3}-4 v_{2} v_{3}-4 N v_{2} v_{4}+\left(2 N^{2}+8\right) v_{3} v_{4} \\
& -2 N v_{4}^{2}-12 N v_{3} \alpha_{s}+4 N v_{3} \alpha_{e}-2 N \alpha_{e}^{2} \\
\beta_{v_{4}}= & \left(\frac{3}{2} N^{2}+16\right) v_{4}^{2}+12 v_{1} v_{4}+20 v_{2} v_{4}-2 v_{3}^{2} \\
& -2 N v_{3} v_{4}-12 N v_{4} \alpha_{s}+6 \alpha_{s}^{2}+4 N v_{4} \alpha_{e}-4 \alpha_{e}^{2} . \tag{3.28}
\end{align*}
$$

If we now set $v_{1}=v_{2}=v_{4}=0$ and $v_{3}=\alpha_{e}=\alpha_{s}$ the theory becomes supersymmetric; and substituting these values in eq. (3.28) we indeed find $\beta_{v_{1}}=\beta_{v_{2}}=\beta_{v_{4}}=0$ and

$$
\begin{equation*}
\beta_{v_{3}}=-\frac{6 N}{8 \pi^{2}} \alpha_{s}^{2}, \tag{3.29}
\end{equation*}
$$

(restoring the $8 \pi^{2}$ factor) which is identical to the one-loop gauge β-function β_{s} in the supersymmetric case.

Let us consider now the special case of $\mathrm{SU}(3)$. In $\mathrm{SU}(3)$, $\left(\bar{H}_{1}, \bar{H}_{2}, \bar{H}_{3}\right)$ form a basis; however if we set $v_{4}=0$ in eq. (3.28) then we nevertheless have

$$
\begin{equation*}
\beta_{v_{4}}=-2 v_{3}^{2}+6 \alpha_{s}^{2}-4 \alpha_{e}^{2} \tag{3.30}
\end{equation*}
$$

This represents a set of contributions to $\beta_{v_{1,2,3}}$ which we can identify by using the identity

$$
\begin{equation*}
\bar{H}_{4}=\frac{3}{2}\left(\bar{H}_{1}+\bar{H}_{2}\right)+\frac{1}{2} \bar{H}_{3} . \tag{3.31}
\end{equation*}
$$

Incorporating these contributions into eq. (3.28) we thus find for $\mathrm{SU}(3)$

$$
\begin{align*}
& \beta_{v_{1}}=8 v_{1}^{2}+36 v_{1} v_{2}+12 v_{2}^{2}-12 v_{1} v_{3}+24 v_{2} v_{3}-36 v_{1} \alpha_{s}+12 v_{1} \alpha_{e}-3 v_{3}^{2}+9 \alpha_{s}^{2}-6 \alpha_{e}^{2} \\
& \beta_{v_{2}}=12 v_{1} v_{2}+24 v_{2}^{2}-12 v_{2} v_{3}-36 v_{2} \alpha_{s}+12 v_{2} \alpha_{e}-3 v_{3}^{2}+9 \alpha_{s}^{2}-6 \alpha_{e}^{2} \\
& \beta_{v_{3}}=11 v_{3}^{2}+12 v_{1} v_{3}-4 v_{2} v_{3}-36 v_{3} \alpha_{s}+12 v_{3} \alpha_{e}+3 \alpha_{s}^{2}-8 \alpha_{e}^{2} \tag{3.32}
\end{align*}
$$

It is easy to check that this set still reduces correctly in the supersymmetric limit.
For the special case of $\mathrm{SU}(2)$, the basis is two dimensional and we have the identities

$$
\begin{align*}
& 2 \bar{H}_{1}-\bar{H}_{2}-\bar{H}_{3}=0 \\
& 2 \bar{H}_{1}+\bar{H}_{2}-\bar{H}_{4}=0 \tag{3.33}
\end{align*}
$$

If we choose the basis $\left(\bar{H}_{1}, \bar{H}_{2}\right)$ then we find

$$
\begin{align*}
& \beta_{v_{1}}=8 v_{1}^{2}+16 v_{1} v_{2}+12 v_{2}^{2}-24 v_{1} \alpha_{s}+8 v_{1} \alpha_{e}-16 \alpha_{e}^{2}+12 \alpha_{s}^{2} \\
& \beta_{v_{2}}=12 v_{1} v_{2}+14 v_{2}^{2}-24 v_{2} \alpha_{s}+8 v_{2} \alpha_{e}+6 \alpha_{s}^{2} \tag{3.34}
\end{align*}
$$

Alternatively we could choose the basis $\left(\bar{H}_{3}, \bar{H}_{4}\right)$ when we find

$$
\begin{align*}
& \beta_{v_{3}}=8 v_{3}^{2}+24 v_{3} v_{4}-24 v_{3} \alpha_{s}+8 v_{3} \alpha_{e}-4 \alpha_{e}^{2} \\
& \beta_{v_{4}}=38 v_{4}^{2}-2 v_{3}^{2}-4 v_{3} v_{4}-24 v_{4} \alpha_{s}+6 \alpha_{s}^{2}+8 v_{4} \alpha_{e}-4 \alpha_{e}^{2} \tag{3.35}
\end{align*}
$$

With this basis the supersymmetric limit is again apparent; setting $v_{4}=0$ and $v_{3}=\alpha_{e}=\alpha_{s}$ we obtain $\beta_{v_{4}}=0$ and $\beta_{v_{3}}=-12 \alpha_{s}^{2}$ as expected.

For the fundamental representation of $\operatorname{SU}(N)$ we find

$$
\begin{equation*}
\operatorname{Tr}\left(R^{a} R^{b} R^{c} R^{d}\right)=\frac{1}{4 N}\left[K_{1}-K_{2}+K_{3}\right]+\frac{1}{8}\left[K_{4}-K_{5}+K_{6}\right]+\frac{i}{8}\left[K_{7}+K_{8}+K_{9}\right] \tag{3.36}
\end{equation*}
$$

and hence for the case of $2 n_{f}$ sets of fermions in the fundamental representation of $\mathrm{SU}(N)$ (corresponding to QCD with n_{f} flavours),

$$
\begin{equation*}
\bar{H}_{i} \Delta \beta_{v_{i}}=2 n_{f} \alpha_{e}^{2}\left[\frac{2}{N}\left(\bar{H}_{1}+\bar{H}_{2}-\bar{H}_{4}\right)-\bar{H}_{3}\right] \tag{3.37}
\end{equation*}
$$

so that the complete set of β-functions for this case is:

$$
\begin{align*}
\beta_{v_{1}}= & 8 v_{1}^{2}+4 N^{2} v_{1} v_{2}+12 v_{2}^{2}-4 N v_{1} v_{3}+6 N^{2} v_{1} v_{4}+8 N v_{2} v_{3} \\
& +8 N v_{3} v_{4}+8 N^{2} v_{2} v_{4}+10 N^{2} v_{4}^{2}-12 N v_{1} \alpha_{s}+4 n_{f} v_{1} \alpha_{e}+4 \frac{n_{f}}{N} \alpha_{e}^{2} \\
\beta_{v_{2}}= & 12 v_{1} v_{2}+\left(2 N^{2}+6\right) v_{2}^{2}-4 N v_{2} v_{3}+6 N^{2} v_{2} v_{4} \\
& -4 N v_{3} v_{4}+3 N^{2} v_{4}^{2}-12 N v_{2} \alpha_{s}+4 n_{f} v_{2} \alpha_{e}+4 \frac{n_{f}}{N} \alpha_{e}^{2} \\
\beta_{v_{3}}= & 4 N v_{3}^{2}+12 v_{1} v_{3}-4 v_{2} v_{3}-4 N v_{2} v_{4}+\left(2 N^{2}+8\right) v_{3} v_{4} \\
& -2 N v_{4}^{2}-12 N v_{3} \alpha_{s}+4 n_{f} v_{3} \alpha_{e}-2 n_{f} \alpha_{e}^{2} \\
\beta_{v_{4}}= & \left(\frac{3}{2} N^{2}+16\right) v_{4}^{2}+12 v_{1} v_{4}+20 v_{2} v_{4}-2 v_{3}^{2} \\
& -2 N v_{3} v_{4}-12 N v_{4} \alpha_{s}+6 \alpha_{s}^{2}+4 n_{f} v_{4} \alpha_{e}-4 \frac{n_{f}}{N} \alpha_{e}^{2} . \tag{3.38}
\end{align*}
$$

It is straightforward to incorporate the fermion contributions in our other choices of bases involving u_{i} or w_{i}.

Turning again to the special case of $\operatorname{SU}(3)$, and setting $v_{4}=0$ in eq. (3.38) we have

$$
\begin{equation*}
\beta_{v_{4}}=-2 v_{3}^{2}+6 \alpha_{s}^{2}-4 \frac{n_{f}}{3} \alpha_{e}^{2} \tag{3.39}
\end{equation*}
$$

and incorporating these contributions into eq. (3.38) we thus find for $\mathrm{SU}(3)$:

$$
\begin{align*}
& \beta_{v_{1}}=8 v_{1}^{2}+36 v_{1} v_{2}+12 v_{2}^{2}-12 v_{1} v_{3}+24 v_{2} v_{3}-36 v_{1} \alpha_{s}+4 n_{f} v_{1} \alpha_{e}-3 v_{3}^{2}+9 \alpha_{s}^{2}-2 \frac{n_{f}}{3} \alpha_{e}^{2} \\
& \beta_{v_{2}}=12 v_{1} v_{2}+24 v_{2}^{2}-12 v_{2} v_{3}-36 v_{2} \alpha_{s}+4 n_{f} v_{2} \alpha_{e}-3 v_{3}^{2}+9 \alpha_{s}^{2}-2 \frac{n_{f}}{3} \alpha_{e}^{2} \\
& \beta_{v_{3}}=11 v_{3}^{2}+12 v_{1} v_{3}-4 v_{2} v_{3}-36 v_{3} \alpha_{s}+4 n_{f} v_{3} \alpha_{e}+3 \alpha_{s}^{2}-8 \frac{n_{f}}{3} \alpha_{e}^{2} \tag{3.40}
\end{align*}
$$

The special case of $\operatorname{SU}(2)$ in the fundamental fermion case we leave as an exercise for the reader.

3.2 The general case

In this subsection we give the results for $\beta_{v_{i}}$ for a general gauge group. The various group invariants are defined in appendix A , where results for them for the fundamental representations of $\mathrm{SU}(N), \mathrm{SO}(N)$ and $\mathrm{Sp}(N)$ also appear.

We have derived these results both by substituting in the general expressions that follow and by direct calculations with each class of group in the manner described in the previous section.

We find

$$
\begin{aligned}
\beta_{v_{1}}= & -32 n_{f} \frac{5 C_{A}^{2} D_{2}(R A)+\left(C_{A}-6 C_{R}\right) D_{2}(A) I_{2}(R)}{25 C_{A}^{4} N_{A}-12 D_{2}(A)\left(2+N_{A}\right)} \alpha_{e}^{2}-12 C_{A} v_{1} \alpha_{s} \\
& +8 I_{2}(R) n_{f} v_{1} \alpha_{e}+8 v_{1}^{2}+12 v_{2}^{2}-\frac{192 D_{2}(A)-80 C_{A}^{4} N_{A}}{9 C_{A} N_{A}\left(N_{A}-3\right)} v_{3} v_{4} \\
& +\frac{4}{27 N_{A}}\left\{7 \frac{-12 D_{2}(A)+5 C_{A}^{4} N_{A}}{N_{A}-3}\right. \\
& \left.-24 \frac{72 D_{2}(A)^{2}-90 C_{A}^{2} D_{3}(A) N_{A}+25 C_{A}^{4} D_{2}(A) N_{A}}{25 C_{A}^{4} N_{A}-12 D_{2}(A)\left(2+N_{A}\right)}\right\} v_{4}^{2} \\
& +v_{1}\left[4\left(1+N_{A}\right) v_{2}-4 C_{A} v_{3}+6 C_{A}^{2} v_{4}\right]+v_{2}\left(8 C_{A} v_{3}+8 C_{A}^{2} v_{4}\right)
\end{aligned}
$$

$$
\begin{align*}
\beta_{v_{2}}= & -32 n_{f} \frac{5 C_{A}^{2} D_{2}(R A)+\left(C_{A}-6 C_{R}\right) D_{2}(A) I_{2}(R)}{25 C_{A}^{4} N_{A}-12 D_{2}(A)\left(2+N_{A}\right)} \alpha_{e}^{2} \\
& -12 C_{A} v_{2} \alpha_{s}+8 I_{2}(R) n_{f} v_{2} \alpha_{e}+12 v_{1} v_{2}+2\left(4+N_{A}\right) v_{2}^{2} \\
& +\frac{96 D_{2}(A)-40 C_{A}^{4} N_{A}}{9 C_{A} N_{A}\left(N_{A}-3\right)} v_{3} v_{4}+\frac{2}{27 N_{A}}\left\{7 \frac{12 D_{2}(A)-5 C_{A}^{4} N_{A}}{\left(N_{A}-3\right)}\right. \\
& \left.-48 \frac{72 D_{2}(A)^{2}-90 C_{A}^{2} D_{3}(A) N_{A}+25 C_{A}^{4} D_{2}(A) N_{A}}{25 C_{A}^{4} N_{A}-12 D_{2}(A)\left(2+N_{A}\right)}\right\} v_{4}^{2} \\
& +v_{2}\left(-4 C_{A} v_{3}+6 C_{A}^{2} v_{4}\right) \\
\beta_{v_{3}}= & -\frac{4 n_{f}}{25 C_{A}^{4} N_{A}-12 D_{2}(A)\left(2+N_{A}\right)}\left\{35 C_{A}^{4} I_{2}(R) N_{A}-10 C_{A}^{3} C_{R} I_{2}(R) N_{A}\right. \\
& \left.+4 C_{A} D_{2}(R A)\left(2+N_{A}\right)-16 D_{2}(A) I_{2}(R)\left(2+N_{A}\right)\right\} \alpha_{e}^{2} \\
& -12 C_{A} v_{3} \alpha_{s}+8 I_{2}(R) n_{f} v_{3} \alpha_{e}+12 v_{1} v_{3}+4 C_{A} v_{3}^{2} \\
& +2 \frac{48 D_{2}(A)\left(-1+N_{A}\right)+C_{A}^{4} N_{A}\left(-61+7 N_{A}\right)}{9 C_{A}^{2} N_{A}\left(N_{A}-3\right)} \\
& -\frac{4}{27 C_{A}\left(N_{A}-3\right) N_{A}\left[25 C_{A}^{4} N_{A}-12 D_{2}(A)\left(2+N_{A}\right)\right]} \\
& \left\{144 D_{2}(A)^{2}\left(2+N_{A}\right)\left(1+2 N_{A}\right)\right. \\
& +12 C_{A}^{4} D_{2}(A) N_{A}\left[-191+\left(-56+N_{A}\right) N_{A}\right] \\
& \left.+C_{A}^{2} N_{A}\left[-216 D_{3}(A)\left(-3+N_{A}\right)\left(2+N_{A}\right)+25 C_{A}^{6} N_{A}\left(23+4 N_{A}\right)\right]\right\} v_{4}^{2} \\
& -v_{2}\left(4 v_{3}+4 C_{A} v_{4}\right) \\
\beta_{v_{4}}= & 6 \alpha_{s}^{2}+8 n_{f} \frac{5 C_{A}^{2}\left(C_{A}-6 C_{R}\right) I_{2}(R) N_{A}+12 D_{2}(R A)\left(2+N_{A}\right)}{25 C_{A}^{4} N_{A}-12 D_{2}(A)\left(2+N_{A}\right)} \alpha_{e}^{2} \\
& -2 v_{3}^{2}-12 C_{A} v_{4} \alpha_{s}+8 I_{2}(R) n_{f} v_{4} \alpha_{e}+12 v_{1} v_{4}+20 v_{2} v_{4}-2 C_{A} v_{3} v_{4} \\
& -\frac{1152 D_{3}(A)\left(2+N_{A}\right)-5 C_{A}^{2}\left[125 C_{A}^{4} N_{A}+4 D_{2}(A)\left(98+N_{A}\right)\right]}{6\left[25 C_{A}^{4} N_{A}-12 D_{2}(A)\left(2+N_{A}\right)\right]} \tag{3.41}
\end{align*}
$$

The forms taken by $C_{A, R}, I_{2}(R)$ and the various invariants $D_{2}(A)$ etc for $\operatorname{SU}(N), \operatorname{SO}(N)$ and $\operatorname{Sp}(N)$ are given in tables 2 因 in the appendix. Using table 2 it is easy to show that the results in eq. (3.41) reduce to the results in eq. (3.38) for the case of $\operatorname{SU}(N)$.

4. The general four-loop results

The renormalisation constants for the various couplings are defined through

$$
\begin{align*}
g_{s}^{0} & =\mu^{\epsilon} Z_{s} g_{s}, & g_{e}^{0} & =\mu^{\epsilon} Z_{e} g_{e}, \\
\varepsilon_{\sigma}^{0, a} & =\sqrt{Z^{\varepsilon \varepsilon}} \varepsilon_{\sigma}^{a}, & \Gamma_{\bar{\psi} \psi \varepsilon}^{0} & =Z^{\psi \psi \varepsilon} \Gamma_{\bar{\psi} \psi \varepsilon},
\end{align*}
$$

where $\Gamma_{\bar{\psi} \psi \varepsilon}$ and $\Gamma_{\varepsilon \varepsilon \varepsilon \varepsilon}$ are the one-particle irreducible ε-scalar-fermion and four- ε-scalar Green functions, respectively, the superscript " 0 " denotes bare quantities, and μ is the renormalisation scale. The renormalisation constants associated with the various couplings
satisfy the following relations

$$
\begin{equation*}
Z_{s}=\frac{Z^{\psi \psi W}}{Z^{\psi \psi} \sqrt{Z^{W W}}}, \quad Z_{e}=\frac{Z^{\psi \psi \varepsilon}}{Z^{\psi \psi} \sqrt{Z^{\varepsilon \varepsilon}}}, \quad Z_{v_{r}}=\frac{\sqrt{Z_{r}^{4 \varepsilon}}}{Z^{\varepsilon \varepsilon}}, \tag{4.2}
\end{equation*}
$$

with renormalisation constants as defined in eq. (2.11) and eq. (2.12).
Let us define the β functions for the corresponding couplings in the $\overline{\mathrm{DR}}$ scheme:

$$
\begin{align*}
& \beta_{s}^{\overline{\mathrm{DR}}}\left(\alpha_{s}, \alpha_{e},\left\{v_{r}\right\}\right)=\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \frac{\alpha_{s}}{\pi} \\
& =-\left[\epsilon \frac{\alpha_{s}}{\pi}+2 \frac{\alpha_{s}}{Z_{s}^{\overline{D R}}}\left(\frac{\partial Z_{s}^{\overline{\mathrm{DR}}}}{\partial \alpha_{e}} \beta_{e}+\sum_{r} \frac{\partial Z_{s}^{\overline{\mathrm{DR}}}}{\partial v_{r}} \beta_{v_{r}}\right)\right]\left(1+2 \frac{\alpha_{s}}{\left.Z_{s}^{\overline{\mathrm{DR}}} \frac{\partial Z_{s}^{\overline{\mathrm{DR}}}}{\partial \alpha_{s}}\right)^{-1}, ~\left(\alpha_{s}\right.}\right. \\
& =-\epsilon \frac{\alpha_{s}}{\pi}-\sum_{i, j, k, l, m, n} \beta_{i j k l m n}^{\overline{\overline{D R}}}\left(\frac{\alpha_{s}}{\pi}\right)^{i}\left(\frac{\alpha_{e}}{\pi}\right)^{j}\left(\frac{v_{1}}{\pi}\right)^{k}\left(\frac{v_{2}}{\pi}\right)^{l}\left(\frac{v_{3}}{\pi}\right)^{m}\left(\frac{v_{4}}{\pi}\right)^{n}, \tag{4.3}\\
& \beta_{e}\left(\alpha_{s}, \alpha_{e},\left\{v_{r}\right\}\right)=\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \frac{\alpha_{e}}{\pi} \\
& =-\left[\epsilon \frac{\alpha_{e}}{\pi}+2 \frac{\alpha_{e}}{Z_{e}}\left(\frac{\partial Z_{e}}{\partial \alpha_{s}} \beta_{s}^{\overline{\mathrm{DR}}}+\sum_{r} \frac{\partial Z_{e}}{\partial v_{r}} \beta_{v_{r}}\right)\right]\left(1+2 \frac{\alpha_{e}}{Z_{e}} \frac{\partial Z_{e}}{\partial \alpha_{e}}\right)^{-1} \\
& =-\epsilon \frac{\alpha_{e}}{\pi}-\sum_{i, j, k, l, m, n} \beta_{i j k l m n}^{e}\left(\frac{\alpha_{s}}{\pi}\right)^{i}\left(\frac{\alpha_{e}}{\pi}\right)^{j}\left(\frac{v_{1}}{\pi}\right)^{k}\left(\frac{v_{2}}{\pi}\right)^{l}\left(\frac{v_{3}}{\pi}\right)^{m}\left(\frac{v_{4}}{\pi}\right)^{n}, \tag{4.4}\\
& \beta_{v_{r}}\left(\alpha_{s}, \alpha_{e},\left\{v_{r}\right\}\right)=\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \frac{v_{r}}{\pi} \\
& =-\left[\epsilon \frac{v_{r}}{\pi}+2 \frac{v_{r}}{Z_{\lambda_{r}}}\left(\frac{\partial Z_{\lambda_{r}}}{\partial \alpha_{s}} \beta_{s}^{\overline{\mathrm{DR}}}+\frac{\partial Z_{\lambda_{r}}}{\partial \alpha_{e}} \beta_{e}+\sum_{r^{\prime} \neq r} \frac{\partial Z_{\lambda_{r}}}{\partial v_{r^{\prime}}} \beta_{v_{r^{\prime}}}\right)\right] \\
& \left(1+2 \frac{v_{r}}{Z_{\lambda_{r}}} \frac{\partial Z_{\lambda_{r}}}{\partial v_{r}}\right)^{-1} \\
& =-\epsilon \frac{v_{r}}{\pi}-\sum_{i, j, k, l, m, n} \beta_{i j k l m n}^{v_{r}}\left(\frac{\alpha_{s}}{\pi}\right)^{i}\left(\frac{\alpha_{e}}{\pi}\right)^{j}\left(\frac{v_{1}}{\pi}\right)^{k}\left(\frac{v_{2}}{\pi}\right)^{l}\left(\frac{v_{3}}{\pi}\right)^{m}\left(\frac{v_{4}}{\pi}\right)^{n} . \tag{4.5}
\end{align*}
$$

Here and in the following we do not explicitly display the dependence on the renormalisation scale μ, i.e., $\alpha_{s} \equiv \alpha_{s}(\mu)$ etc. Note that in the second line of eq. (4.3), the $\mathcal{O}(\epsilon)$ terms of β_{e} and $\beta_{v_{r}}$ contribute to the finite part of $\beta_{s}^{\overline{\mathrm{DR}}}$, and similarly for eqs. (4.4) and (4.5). As we will see below, in order to compute the four-loop term of $\beta^{\overline{\mathrm{DR}}}$ one needs β_{e} to two loops and $\beta_{v_{r}}(r=1, \cdots 4)$ to one loop.

For the cases when the fermion representation allows a mass term we introduce the fermion mass anomalous dimension, which is defined through

$$
\begin{align*}
\gamma_{m}^{\overline{\mathrm{DR}}} & =\frac{\mu^{2}}{m^{\overline{\mathrm{DR}}}} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} m^{\overline{\mathrm{DR}}} \\
& =-\pi \beta_{s}^{\overline{\mathrm{DR}}} \frac{\partial \ln Z_{m}^{\overline{\mathrm{DR}}}}{\partial \alpha_{s}}-\pi \beta_{e} \frac{\partial \ln Z_{m}^{\overline{\mathrm{DR}}}}{\partial \alpha_{e}}-\pi \sum_{r} \beta_{v_{r}} \frac{\partial \ln Z_{m}^{\overline{\mathrm{DR}}}}{\partial v_{r}} \\
& =-\sum_{i \cdots n} \gamma_{i \cdots n}^{\overline{\mathrm{DR}}}\left(\frac{\alpha_{s}}{\pi}\right)^{i}\left(\frac{\alpha_{e}}{\pi}\right)^{j}\left(\frac{v_{1}}{\pi}\right)^{k}\left(\frac{v_{2}}{\pi}\right)^{l}\left(\frac{v_{3}}{\pi}\right)^{m}\left(\frac{v_{4}}{\pi}\right)^{n} . \tag{4.6}
\end{align*}
$$

From this equation one can see that for the four-loop term of $\gamma_{m}^{\overline{\mathrm{DR}}}$, the beta functions β_{e} and $\beta_{v_{r}}$ are needed to three loops and one loop, respectively, since the dependence of $Z_{m}^{\overline{\mathrm{DR}}}$ on $\alpha_{e}\left(v_{r}\right)$ starts at one loop (three loops) [1]]. The general result for the two-loop order β_{e} is known [1] and for the three-loop order contributions we find (generalising the QCD results from ref. [2], using a similar calculational setup to the one applied in [1], 2], which relies on the computer programs QGRAF [15], q2e, \exp (16, 17] and MINCER [18]):

$$
\begin{aligned}
& \beta_{022000}^{e}=\frac{1}{256}\left[-6 I_{2}(R) N_{A} n_{f}-12 N_{A} C_{R}+6 N_{A} C_{A}-10 C_{R}+35 C_{A}+15 I_{2}(R) n_{f}\right] \\
& \beta_{010030}^{e}=-\frac{63}{1024} C_{A}^{3} \\
& \beta_{030100}^{e}=-\frac{3}{32}\left[C_{A}^{2}+6 I_{2}(R) C_{R} n_{f}-10 C_{A} C_{R}+2 C_{A} I_{2}(R) n_{f}+16 C_{R}^{2}\right] \\
& \beta_{020200}^{e}=-\frac{1}{256}\left[25 N_{A} C_{A}-3 I_{2}(R) N_{A} n_{f}-30 N_{A} C_{R}-5 C_{A}-33 I_{2}(R) n_{f}+118 C_{R}\right] \\
& \beta_{021010}^{e}=\frac{1}{128}\left[-27 I_{2}(R) n_{f}+53 C_{A}-30 C_{R}\right] C_{A} \\
& \beta_{210010}^{e}=-\frac{3}{1024 N_{A} I_{2}(R)}\left[5 C_{A}^{3} I_{2}(R) N_{A}+128 D_{2}(R A)\right] \\
& \beta_{110101}^{e}=-\frac{17}{64} C_{A}^{3} \\
& \beta_{211000}^{e}=-\frac{15}{512} C_{A}^{2} \\
& \beta_{012100}^{e}=\frac{3}{64}\left(N_{A}-1\right) \\
& \beta_{021100}^{e}=\frac{1}{128}\left[3 N_{A} C_{A}+15 I_{2}(R) N_{A} n_{f}+6 N_{A} C_{R}-9 C_{A}+3 I_{2}(R) n_{f}-50 C_{R}\right] \\
& \beta_{010003}^{e}=\frac{1}{24576 N_{A}}\left(96 D_{2}(A)-7 C_{A}^{4} N_{A}\right) C_{A}^{2} \\
& \beta_{020110}^{e}=\frac{1}{128}\left[35 C_{A}+27 I_{2}(R) n_{f}-18 C_{R}\right] C_{A} \\
& \beta_{110200}^{e}=\frac{1}{64}\left(N_{A}-9\right) C_{A} \\
& \beta_{010300}^{e}=-\frac{1}{256}\left(3 N_{A}+2\right)\left(N_{A}-1\right) \\
& \beta_{111001}^{e}=-\frac{3}{64} C_{A}^{3} \\
& \beta_{010120}^{e}=\frac{3}{512} C_{A}^{2} \\
& \beta_{010021}^{e}=-\frac{9}{2048 N_{A}}\left(32 D_{2}(A)+7 C_{A}^{4} N_{A}\right) \\
& \beta_{110020}^{e}=\frac{33}{128} C_{A}^{3} \\
& \beta_{011020}^{e}=-\frac{93}{512} C_{A}^{2} \\
& \beta_{020020}^{e}=\frac{1}{512}\left[71 C_{A}-42 C_{R}-81 I_{2}(R) n_{f}\right] C_{A}^{2} \\
& \beta_{010012}^{e}=-\frac{21}{4096} C_{A}^{5} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{010111}^{e}= \frac{81}{512} C_{A}^{3} \\
& \beta_{110011}^{e}= \frac{11}{128} C_{A}^{4} \\
& \beta_{011011}^{e}=-\frac{51}{512} C_{A}^{3} \\
& \beta_{011200}^{e}= \frac{3}{256}\left(N_{A}-1\right)\left(N_{A}-2\right) \\
& \beta_{020011}^{e}= \frac{1}{1536 N_{A} I_{2}(R)}\left\{-384 C_{A} D_{2}(R A)+768 D_{2}(A) I_{2}(R)\right. \\
&\left.+N_{A} I_{2}(R)\left[71 C_{A}^{4}-42 C_{R} C_{A}^{3}-81 I_{2}(R) n_{f} C_{A}^{3}\right]\right\} \\
& \beta_{121000}^{e}=-\frac{1}{32}\left(11 C_{A}^{2}-8 C_{A} C_{R}+8 C_{R}^{2}\right) \\
& \beta_{010210}^{e}= \frac{3}{256}\left(5 N_{A}-2\right) C_{A} \\
& \beta_{110110}^{e}=-\frac{11}{32} C_{A}^{2} \\
& \beta_{011110}^{e}=-\frac{3}{128}\left(-10+N_{A}\right) C_{A} \\
& \beta_{012010}^{e}=-\frac{9}{64} C_{A} \\
& \beta_{111010}^{e}= \frac{11}{32} C_{A}^{2} \\
& \beta_{120010}^{e}=-\frac{1}{32}\left(14 C_{A}+5 C_{R}\right) C_{A}^{2} \\
& \beta_{030010}^{e}=-\frac{3}{64}\left(C_{A}-2 C_{R}-9 I_{2}(R) n_{f}\right) C_{A}^{2} \\
& \beta_{031000}^{e}=-\frac{3}{64}\left[-12 C_{A} C_{R}+6 I_{2}(R) C_{R} n_{f}-7 C_{A} I_{2}(R) n_{f}+2 C_{A}^{2}+16 C_{R}^{2}\right] \\
& \beta_{210100}^{e}=-\frac{1}{512}\left(-192 C_{R}+47 C_{A}\right) C_{A} \\
& \beta_{11100}^{e}=-\frac{1}{32}\left(5 N_{A}-1\right) C_{A} \\
& \beta_{010102}^{e}= \frac{1}{2048 N_{A}}\left(96 D_{2}(A)-13 C_{A}^{4} N_{A}\right) \\
& \beta_{013000}^{e}=-\frac{1}{64}\left(-1+N_{A}\right) \\
& \beta_{110002}^{e}=-\frac{1}{1536 N_{A}}\left[-11 C_{A}^{4} N_{A}+192 D_{2}(A)\right] C_{A} \\
& \beta_{112000}^{e}= \frac{1}{64}\left(3 N_{A}-5\right) C_{A} \\
& \beta_{011002}^{e}=-\frac{1}{2048 N_{A}}\left(96 D_{2}(A)-43 C_{A}^{4} N_{A}\right) \\
& \beta_{010201}^{e}=-\frac{3}{512}\left(5 N_{A}-6\right) C_{A}^{2} \\
& \beta_{011101}^{e}= \frac{9}{256} N_{A} C_{A}^{2} \\
& \hline
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\beta_{020101}^{e}= & -\frac{1}{768 N_{A} I_{2}(R)}\left\{N_{A} I_{2}(R)\left[185 C_{A}^{3}-207 C_{A}^{2} I_{2}(R) n_{f}-342 C_{A}^{2} C_{R}\right]\right. \\
& \left.+960 D_{2}(R A)\right\} \\
\beta_{210001}^{e}= & -\frac{1}{2048 N_{A} I_{2}(R)}\left[5 C_{A}^{4} I_{2}(R) N_{A}-384 C_{A} D_{2}(R A)+96 D_{2}(A) I_{2}(R)\right] \\
\beta_{012001}^{e}= & -\frac{3}{128} C_{A}^{2} \\
\beta_{021001}^{e}= & -\frac{1}{768 N_{A} I_{2}(R)}\left\{N_{A} I_{2}(R)\left[90 C_{A}^{2} C_{R}-143 C_{A}^{3}-63 C_{A}^{2} I_{2}(R) n_{f}\right]\right. \\
& \left.+192 D_{2}(R A)\right\} \\
\beta_{120100}^{e}= & \frac{1}{16}\left(3 C_{A}^{2}-8 C_{R}^{2}+13 C_{A} C_{R}\right) \\
\beta_{030001}^{e}= & -\frac{1}{128 N_{A} I_{2}(R)}\left\{\left(C_{A}-2 C_{R}\right)\left[-96 D_{2}(R A)+C_{A}^{3} I_{2}(R) N_{A}\right]\right. \\
& \left.-9 I_{2}(R)\left[-8 D_{2}(R A)+C_{A}^{3} I_{2}(R) N_{A}\right] n_{f}\right\} \\
\beta_{020002}^{e}= & -\frac{1}{18432 N_{A} I_{2}(R)\left[-25 C_{A}^{4} N_{A}+12 D_{2}(A)\left(2+N_{A}\right)\right]} \\
& \left\{-3981312 D_{3}(A) D_{2}(R A)+1132800 C_{A}^{6} D_{2}(R A) N_{A}\right. \\
& -829440 C_{A}^{3} D_{3}(A) I_{2}(R) N_{A}+12 C_{A}^{5} D_{2}(A) I_{2}(R)\left(18058-71 N_{A}\right) N_{A} \\
& +1775 C_{A}^{9} I_{2}(R) N_{A}^{2}+1152 C_{A} D_{2}(A)^{2} I_{2}(R)\left(586+5 N_{A}\right) \\
& +179712 D_{3}(R A A)\left[-25 C_{A}^{4} N_{A}+12 D_{2}(A)\left(2+N_{A}\right)\right] \\
& +9216 C_{A}^{2}\left[540 C_{R} D_{3}(A) I_{2}(R) N_{A}+D_{2}(A) D_{2}(R A)\left(362+N_{A}\right)\right] \\
& -75 C_{A}^{8} I_{2}(R) N_{A}^{2}\left[14 C_{R}+27 I_{2}(R) n_{f}\right] \\
& +36 C_{A}^{4} D_{2}(A) I_{2}(R) N_{A}\left[2 C_{R}\left(-16586+7 N_{A}\right)\right. \\
& \left.+9 I_{2}(R)\left(206+3 N_{A}\right) n_{f}\right]-1990656 D_{3}(A) D_{2}(R A) N_{A} \\
& \left.-3456 D_{2}(A)^{2} I_{2}(R)\left[2 C_{R}\left(602+13 N_{A}\right)+9 I_{2}(R)\left(2+N_{A}\right) n_{f}\right]\right\} \\
\beta_{220000}^{e}= & -\frac{1}{1536 N_{A} I_{2}(R)}\left[3456 D_{2}(R) n_{f}+I_{2}(R) N_{A}\left[-335 C_{A}^{3}-642 C_{A}^{2} C_{R}\right.\right. \\
& -2148 C_{A} C_{R}^{2}+3336 C_{R}^{3}+3\left(247 C_{A}^{2}+896 C_{A} C_{R}-1180 C_{R}^{2}\right) I_{2}(R) n_{f} \\
& \left.+24\left(C_{A}-16 C_{R}\right) I_{2}(R)^{2} n_{f}^{2}\right]-384 D_{2}(R A)-288\left(24 D_{2}(R A)\right. \\
& +24 D_{2}(R) n_{f}+I_{2}(R) N_{A}\left\{-22 C_{A}^{3}+6 C_{R}^{2}\left[6 C_{R}-I_{2}(R) n_{f}\right]\right. \\
& \left.\left.\left.+3 C_{A} C_{R}\left[-32 C_{R}+I_{2}(R) n_{f}\right]+C_{A}^{2}\left[81 C_{R}+2 I_{2}(R) n_{f}\right]\right\}\right) \zeta_{3}\right] \\
\beta_{130000}^{e}= & -\frac{1}{64 N_{A} I_{2}(R)}\left(48 C_{2}(R A)+I_{2}(R) N_{A}\left\{11 C_{A}^{3}-242 C_{A}^{2} C_{R}\right.\right. \\
& +640 C_{A} C_{R}^{2}-416 C_{R}^{3}-28 C_{A}^{2} I_{2}(R) n_{f}+144 C_{A} C_{R} I_{2}(R) n_{f} \\
& -104 C_{R}^{2} I_{2}(R) n_{f}-12 C_{A} I_{2}(R)^{2} n_{f}^{2} \\
& \left.\left.+48\left(C_{A}-2 C_{R}\right)\left(C_{A}-C_{R}\right)\left[2 C_{R}-C_{A}+I_{2}(R) n_{f}\right] \zeta_{3}\right\}\right) \\
\left.5 C_{A}-4 C_{R}\right) D_{2}(R A) \\
\beta_{2}(R A
\end{array}\right)
$$

$$
\begin{align*}
\beta_{310000}^{e}= & -\frac{1}{13824 N_{A} I_{2}(R)}\left(-15552 D_{2}(R A)+I_{2}(R) N_{A}\left\{13755 C_{A}^{3}\right.\right. \\
& -4 C_{A}^{2}\left[13819 C_{R}+1389 I_{2}(R) n_{f}\right] \\
& -8 C_{R}\left[3483 C_{R}^{2}-280 I_{2}(R)^{2} n_{f}^{2}+108 C_{R} I_{2}(R) n_{f}\left(-23+24 \zeta_{3}\right)\right] \\
& \left.\left.+4 C_{A}\left[12339 C_{R}^{2}+120 I_{2}(R)^{2} n_{f}^{2}+4 C_{R} I_{2}(R) n_{f}\left(157+1296 \zeta_{3}\right)\right]\right\}\right) \\
\beta_{040000}^{e}= & -\frac{1}{192 N_{A} I_{2}(R)\left[12 D_{2}(A)\left(2+N_{A}\right)-25 C_{A}^{4} N_{A}\right]} \\
& {\left[8640 C_{A}^{3} D_{2}(R A) I_{2}(R) N_{A} n_{f}-51840 C_{A}^{2} C_{R} D_{2}(R A) I_{2}(R) N_{A} n_{f}\right.} \\
& +10368 D_{2}(R A)^{2}\left(2+N_{A}\right) n_{f}+100 C_{A}^{7} I_{2}(R) N_{A}^{2}\left(-4+111 \zeta_{3}\right) \\
& -150 C_{A}^{4} N_{A}\left[C_{R} I_{2}(R)^{3} N_{A} n_{f}^{2}+2 C_{R}^{2} I_{2}(R)^{2} N_{A} n_{f}\left(23-6 \zeta_{3}\right)\right. \\
& +24 D_{2}(R) n_{f}\left(-7+2 \zeta_{3}\right)+8 C_{R}^{3} I_{2}(R) N_{A}\left(7+9 \zeta_{3}\right) \\
& \left.+16 D_{2}(R A)\left(-1+12 \zeta_{3}\right)\right]+75 C_{A}^{5} I_{2}(R) N_{A}^{2}\left[7 I_{2}(R)^{2} n_{f}^{2}\right. \\
& \left.-4 C_{R} I_{2}(R) n_{f}\left(-31+9 \zeta_{3}\right)+8 C_{R}^{2}\left(17+60 \zeta_{3}\right)\right] \\
& -75 C_{A}^{6} I_{2}(R) N_{A}^{2}\left[I_{2}(R) n_{f}\left(47-16 \zeta_{3}\right)+4 C_{R}\left(8+117 \zeta_{3}\right)\right] \\
& +12 D_{2}(A)\left(96 D_{2}(R A)\left(2+N_{A}\right)\left(-1+12 \zeta_{3}\right)\right. \\
& -4 C_{A}^{3} I_{2}(R) N_{A}\left(2+N_{A}\right)\left(-4+111 \zeta_{3}\right) \\
& +3 C_{A}^{2} I_{2}(R) N_{A}\left\{4 C_{R}\left(2+N_{A}\right)\left(8+117 \zeta_{3}\right)\right. \\
& \left.+I_{2}(R) n_{f}\left[118+47 N_{A}-16\left(2+N_{A}\right) \zeta_{3}\right]\right\} \\
& -3 C_{A} I_{2}(R) N_{A}\left\{7 I_{2}(R)^{2}\left(2+N_{A}\right) n_{f}^{2}+8 C_{R}^{2}\left(2+N_{A}\right)\left(17+60 \zeta_{3}\right)\right. \\
& \left.+4 C_{R} I_{2}(R) n_{f}\left[134+31 N_{A}-9\left(2+N_{A}\right) \zeta_{3}\right]\right\} \\
& +6 C_{R} I_{2}(R)^{3} N_{A}\left(2+N_{A}\right) n_{f}^{2}+144 D_{2}(R)\left(2+N_{A}\right) n_{f}\left(-7+2 \zeta_{3}\right) \\
& +48 C_{R}^{3} I_{2}(R) N_{A}\left(2+N_{A}\right)\left(7+9 \zeta_{3}\right) \\
& \left.\left.+12 C_{R}^{2} I_{2}(R)^{2} N_{A} n_{f}\left[262+23 N_{A}-6\left(2+N_{A}\right) \zeta_{3}\right]\right)\right] . \tag{4.7}
\end{align*}
$$

(Here and elsewhere we denote $\zeta(n)$ by ζ_{n}.) We computed the four-loop DRED quantities from their DREG counterparts using the indirect method discussed in refs. [], [9]. It is based on the following formulæ:

$$
\begin{align*}
& \beta_{s}^{\overline{\mathrm{DR}}}=\beta_{s}^{\overline{\mathrm{MS}}} \frac{\partial \alpha_{s}}{\partial \alpha_{s}^{\overline{\mathrm{MS}}}}+\beta_{e} \frac{\partial \alpha_{s}}{\partial \alpha_{e}}+\sum_{r} \beta_{v_{r}} \frac{\partial \alpha_{s}}{\partial v_{r}}, \\
& \gamma_{m}^{\overline{\mathrm{DR}}}=\gamma_{m}^{\overline{\mathrm{MS}}} \frac{\partial \ln m^{\overline{\mathrm{DR}}}}{\partial \ln m^{\overline{\mathrm{MS}}}}+\frac{\pi \beta_{s}^{\overline{\mathrm{MS}}}}{m^{\overline{\mathrm{DR}}}} \frac{\partial m^{\overline{\mathrm{DR}}}}{\partial \alpha_{s}^{\overline{\mathrm{MS}}}}+\frac{\pi \beta_{e}}{m^{\overline{\mathrm{DR}}}} \frac{\partial m^{\overline{\mathrm{DR}}}}{\partial \alpha_{e}}+\sum_{r} \frac{\pi \beta_{v_{r}}}{m^{\overline{\mathrm{DR}}}} \frac{\partial m^{\overline{\mathrm{DR}}}}{\partial v_{r}} . \tag{4.8}
\end{align*}
$$

Let us briefly discuss the order in perturbation theory up to which the individual building blocks are needed. Of course, the $\overline{\mathrm{MS}}$ quantities are needed to four-loop order; they can be found in refs. 20-23]. The dependence of α_{s} and $m^{\overline{\mathrm{DR}}}$ on α_{e} starts at two- and one-loop order [1], respectively. Thus, β_{e} is needed up to the three-loop level (cf. eq. (4.8)). On the other hand, both α_{s} and $m^{\overline{\mathrm{DR}}}$ depend on v_{r} starting from three loops and consequently only the one-loop term of $\beta_{v_{r}}$ enters in eq. (4.8). It is given in eq. (3.41).

For the four-loop analysis we also require the three-loop relations between α_{s} and $\alpha_{s} \overline{\mathrm{MS}}$ and between $m^{\overline{\mathrm{DR}}}$ and $m^{\overline{\mathrm{MS}}}$. The two-loop results were presented in ref. [1], and the threeloop results for the special case of QCD in ref. [2]. Parametrising the three-loop terms by $\delta_{\alpha}^{(3)}$ and $\delta_{m}^{(3)}$, we have

$$
\begin{align*}
& \alpha_{s}= \alpha_{s}^{\overline{\mathrm{MS}}}\left[1+\frac{\alpha_{s}^{\overline{\mathrm{MS}}}}{\pi} \frac{1}{12} C_{A}+\left(\frac{\alpha_{s}^{\overline{\mathrm{MS}}}}{\pi}\right)^{2} \frac{11}{72} C_{A}^{2}-\frac{\alpha_{s}^{\overline{\mathrm{MS}}}}{\pi} \frac{\alpha_{e}}{\pi} \frac{1}{8} C_{R} I_{2}(R) n_{f}+\delta_{\alpha}^{(3)}+\ldots\right] \\
& m^{\overline{\mathrm{DR}}}=m^{\overline{\mathrm{MS}}}\left[1-\frac{\alpha_{e}}{\pi} \frac{1}{4} C_{R}+\left(\frac{\alpha_{s}^{\overline{\mathrm{MS}}}}{\pi}\right)^{2} \frac{11}{192} C_{A} C_{R}-\frac{\alpha_{s}^{\overline{\mathrm{MS}}}}{\pi} \frac{\alpha_{e}}{\pi} \frac{1}{32} C_{R}\left(3 C_{A}+8 C_{R}\right)\right. \\
&\left.+\left(\frac{\alpha_{e}}{\pi}\right)^{2} \frac{1}{32}\left[3 C_{R}+I_{2}(R) n_{f}\right]+\delta_{m}^{(3)}+\ldots\right] \tag{4.9}
\end{align*}
$$

where the dots denote higher orders in $\alpha_{s}^{\overline{\mathrm{MS}}}, \alpha_{e}$, and v_{r}. We find

$$
\begin{align*}
& \pi^{3} \delta_{\alpha}^{(3)}=\frac{1}{96} \alpha_{s}^{\overline{\mathrm{MS}}} \alpha_{e}^{2} I_{2}(R) n_{f}\left[2 C_{A}^{2}-3 C_{A} C_{R}+2 C_{R}^{2}-C_{A} I_{2}(R) n_{f}\right] \\
& \left.+7 C_{R} I_{2}(R) n_{f}\right)-\frac{1}{192}\left(\alpha_{s}^{\overline{\mathrm{MS}}}\right)^{2} \alpha_{e} I_{2}(R) n_{f}\left(5 C_{A}^{2}+60 C_{A} C_{R}+6 C_{R}^{2}\right) \\
& +\frac{1}{9216} \alpha_{s}^{\overline{\mathrm{MS}}}\left(-168 C_{A}^{3} v_{4} v_{2}-72 C_{A}^{3} v_{4} v_{1}+12 v_{3} v_{4} C_{A}^{4}-48 v_{2} v_{3} C_{A}^{2}\right. \\
& +48 v_{1} v_{3} C_{A}^{2}-48 C_{A} v_{1} v_{2}-48 C_{A} N_{A} v_{1} v_{2}+36 C_{A}^{3} v_{3}^{2}+C_{A}^{5} v_{4}^{2}-72 C_{A} v_{2}^{2} \\
& \left.-24 C_{A} N_{A} v_{2}^{2}-24 C_{A} v_{1}^{2}\right)-\frac{1}{96 N_{A}} \alpha_{s}^{\overline{\mathrm{MS}}} v_{4}^{2} C_{A} D_{2}(A)+\frac{1}{48}\left(\alpha_{s}^{\overline{\mathrm{MS}}}\right)^{2} v_{4} D_{2}(A) \\
& +\frac{1}{4608}\left(\alpha_{s}^{\overline{\mathrm{MS}}}\right)^{2}\left(-6 C_{A}^{3} v_{3}+84 C_{A}^{2} v_{2}+36 C_{A}^{2} v_{1}-v_{4} C_{A}^{4}\right) \\
& +\frac{1}{10368}\left(\alpha_{s}^{\overline{\mathrm{MS}}}\right)^{3}\left[3049 C_{A}^{3}-416 C_{A}^{2} I_{2}(R) n_{f}-138 C_{A} C_{R} I_{2}(R) n_{f}\right] \tag{4.10}\\
& \pi^{3} \delta_{m}^{(3)}=-\frac{1}{384} \alpha_{e}^{3} C_{R}\left[-10 C_{A}^{2}+14 C_{A} C_{R}+27 C_{R}^{2}-7 C_{A} I_{2}(R) n_{f}\right. \\
& \left.+39 C_{R} I_{2}(R) n_{f}-10 I_{2}(R)^{2} n_{f}^{2}+12 C_{A}^{2} \zeta_{3}-36 C_{A} C_{R} \zeta_{3}+24 C_{R}^{2} \zeta_{3}\right] \\
& -\alpha_{e}^{2} C_{R}\left(\frac{1}{192}\left[6 C_{R} v_{1}+12 C_{R} v_{2}-2 C_{A} v_{2}-C_{A} v_{1}\right]\right. \\
& +\frac{1}{16 I_{2}(R) N_{A}} D_{2}(R A) v_{4}+\frac{1}{384} \alpha_{s}^{\overline{\mathrm{MS}}}\left[47 C_{A}^{2}+10 C_{R}^{2}\right. \\
& -3 I_{2}(R) C_{A} n_{f}-19 I_{2}(R) C_{R} n_{f}-165 C_{A} C_{R}+144 C_{R}^{2} \zeta_{3} \\
& \left.\left.-48 I_{2}(R) C_{A} n_{f} \zeta_{3}+48 I_{2}(R) C_{R} n_{f} \zeta_{3}+72 C_{A}^{2} \zeta_{3}-216 C_{A} C_{R} \zeta_{3}\right]\right) \\
& +\alpha_{e} C_{R}\left(\frac { 1 } { 1 2 2 8 8 } \left[200 v_{2}^{2}+88 N_{A} v_{2}^{2}+56 v_{1}^{2}+16 N_{A} v_{1}^{2}\right.\right. \\
& +112 N_{A} v_{2} v_{1}-C_{A}^{4} v_{4}^{2}-12 C_{A}^{3} v_{3} v_{4}+176 v_{2} v_{1}+48 v_{3} C_{A} v_{2} \\
& \left.-36 C_{A}^{2} v_{3}^{2}+488 C_{A}^{2} v_{4} v_{2}+232 C_{A}^{2} v_{4} v_{1}-48 C_{A} v_{1} v_{3}\right] \\
& +\frac{1}{3072}\left(\alpha_{s}^{\overline{\mathrm{MS}}}\right)^{2}\left[2880 C_{R}^{2} \zeta_{3}-168 C_{A} I_{2}(R) n_{f}-1544 C_{A} C_{R}-52 C_{R}^{2}\right. \\
& \left.\left.-128 I_{2}(R) C_{R} n_{f}+1440 C_{A}^{2} \zeta_{3}-4320 C_{A} C_{R} \zeta_{3}-79 C_{A}^{2}\right]\right)
\end{align*}
$$

$$
\begin{align*}
& +\frac{1}{20736}\left(\alpha_{s}^{\overline{\mathrm{MS}}}\right)^{3} C_{R} C_{A}\left[4354 C_{A}+135 C_{R}+304 I_{2}(R) n_{f}\right] \\
& +\frac{3}{128 N_{A}} D_{2}(A) v_{4}^{2} \tag{4.11}
\end{align*}
$$

4.1 The β function and anomalous dimension

Inserting eqs. (4.10) and (4.11) into eq. (4.8), we obtain

$$
\begin{aligned}
& \beta_{500000}^{\overline{\mathrm{DR}}}=b_{3}-\frac{1}{165888 N_{A}}\left\{2592 D_{2}(A)\right. \\
& +C_{A} N_{A}\left[27648 b_{2}-C_{A}\left(1152 b_{1}+85280 b_{0} C_{A}+27 C_{A}^{2}\right)\right. \\
& \left.\left.+64 b_{0}\left(208 C_{A}+69 C_{R}\right) I_{2}(R) n_{f}\right]\right\} \\
& \beta_{203000}^{\overline{\mathrm{DR}}}=\frac{1}{192} C_{A} \\
& \beta_{302000}^{\overline{\mathrm{DR}}}=-\frac{1}{64} C_{A}^{2} \\
& \beta_{311000}^{\overline{\mathrm{DR}}}=-\frac{1}{128} n_{f} I_{2}(R) C_{A}^{2} \\
& \beta_{300002}^{\overline{\mathrm{DR}}}=-\frac{1}{663552 N_{A}}\left[19872 C_{A}^{2} D_{2}(A)-227 C_{A}^{6} N_{A}+27648 D_{3}(A)\right] \\
& \beta_{400010}^{\overline{\mathrm{DR}}}=-\frac{1}{3072}\left(4 b_{0}+9 C_{A}\right) C_{A}^{3} \\
& \beta_{200030}^{\overline{\mathrm{DR}}}=-\frac{11}{3072} C_{A}^{4} \\
& \beta_{310001}^{\overline{\mathrm{DR}}}=-\frac{1}{4608 N_{A}}\left[96 D_{2}(A)-C_{A}^{4} N_{A}\right] I_{2}(R) n_{f} \\
& \beta_{220100}^{\overline{\mathrm{DR}}}=-\frac{1}{48}\left(C_{A}+3 C_{R}\right) n_{f} I_{2}(R) C_{R} \\
& \beta_{301100}^{\overline{\mathrm{DR}}}=-\frac{1}{256}\left(5 N_{A}+12\right) C_{A}^{2} \\
& \beta_{210011}^{\overline{\mathrm{DR}}}=-\frac{1}{1536}\left(4 C_{A}+3 C_{R}\right) n_{f} C_{A}^{3} I_{2}(R) \\
& \beta_{400001}^{\overline{\mathrm{DR}}}=\frac{1}{18432 N_{A}}\left(4 b_{0}+9 C_{A}\right)\left[96 D_{2}(A)-C_{A}^{4} N_{A}\right] \\
& \beta_{300011}^{\overline{\mathrm{DR}}}=\frac{1}{55296 N_{A}}\left[384 D_{2}(A)+227 C_{A}^{4} N_{A}\right] C_{A} \\
& \beta_{400100}^{\overline{\mathrm{DR}}}=\frac{7}{1536}\left(4 b_{0}+9 C_{A}\right) C_{A}^{2} \\
& \beta_{401000}^{\overline{\mathrm{DR}}}=\frac{1}{512}\left(4 b_{0}+9 C_{A}\right) C_{A}^{2} \\
& \beta_{200120}^{\overline{\mathrm{DR}}}=-\frac{3}{512} C_{A}^{3} \\
& \beta_{201020}^{\overline{\mathrm{DR}}}=-\frac{7}{512} C_{A}^{3} \\
& \beta_{310100}^{\overline{\mathrm{DR}}}=-\frac{7}{384} n_{f} I_{2}(R) C_{A}^{2} \\
& \beta_{220001}^{\overline{\mathrm{DR}}}=-\frac{1}{1152 N_{A}\left[-25 C_{A}^{4} N_{A}+12 D_{2}(A)\left(2+N_{A}\right)\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{C_{A}^{3}\left(C_{A}+3 C_{R}\right)\left(25 C_{A}^{4}-12 D_{2}(A)\right) I_{2}(R) N_{A}^{2}\right. \\
& -24\left(C_{A}+3 C_{R}\right)\left[25 C_{A}^{4} D_{2}(R A)-36 D_{2}(A) D_{2}(R A)\right. \\
& \left.\left.+C_{A}^{3} D_{2}(A) I_{2}(R)\right] N_{A}\right\} \\
& \beta_{202100}^{\overline{\mathrm{DR}}}=\frac{1}{64}\left(N_{A}+1\right) C_{A} \\
& \beta_{410000}^{\overline{\mathrm{DR}}}=-\frac{1}{1536} I_{2}(R) n_{f}\left\{8 b_{0}\left(5 C_{A}^{2}+56 C_{A} C_{R}+6 C_{R}^{2}\right)\right. \\
& +C_{R}\left[-192 b_{1}+39 C_{A}^{2}+892 C_{A} C_{R}+108 C_{R}^{2}+24 C_{A} I_{2}(R) n_{f}\right. \\
& \left.\left.-80 C_{R} I_{2}(R) n_{f}\right]\right\} \\
& \beta_{301001}^{\overline{\mathrm{DR}}}=-\frac{1}{3072}\left[96 D_{2}(A)+89 C_{A}^{4} N_{A}\right] \\
& \beta_{220010}^{\overline{\mathrm{DR}}}=\frac{1}{192}\left(C_{A}+3 C_{R}\right) n_{f} I_{2}(R) C_{A}^{2} \\
& \beta_{300020}^{\overline{\mathrm{DR}}}=\frac{1}{18432 N_{A}}\left[96 D_{2}(A)+227 C_{A}^{4} N_{A}\right] \\
& \beta_{210110}^{\overline{\mathrm{DR}}}=\frac{1}{384}\left(4 C_{A}+3 C_{R}\right) n_{f} I_{2}(R) C_{A} \\
& \beta_{320000}^{\overline{\mathrm{DR}}}=-\frac{1}{1152 N_{A}} n_{f}\left(-24 D_{2}(R A)\right. \\
& +I_{2}(R) N_{A}\left\{16 C_{A}^{3}+6 C_{A} C_{R}\left[25 C_{R}-22 I_{2}(R) n_{f}\right]\right. \\
& \left.\left.+3 C_{A}^{2}\left[4 C_{R}-5 I_{2}(R) n_{f}\right]-72 C_{R}^{2}\left[7 C_{R}+5 I_{2}(R) n_{f}\right]\right\}\right) \\
& \beta_{230000}^{\overline{\mathrm{DR}}}=-\frac{1}{192} I_{2}(R) n_{f}\left[-4 C_{A}^{3}+23 C_{A}^{2} C_{R}-46 C_{A} C_{R}^{2}+32 C_{R}^{3}\right. \\
& \left.+\left(6 C_{A}^{2}-33 C_{A} C_{R}+50 C_{R}^{2}\right) I_{2}(R) n_{f}-2\left(C_{A}-7 C_{R}\right) I_{2}(R)^{2} n_{f}^{2}\right] \\
& \beta_{300200}^{\overline{\mathrm{DR}}}=-\frac{1}{1536}\left(19 N_{A}+82\right) C_{A}^{2} \\
& \beta_{200111}^{\overline{\mathrm{DR}}}=-\frac{1}{512} C_{A}^{4} \\
& \beta_{201011}^{\overline{\mathrm{DR}}}=-\frac{9}{512} C_{A}^{4} \\
& \beta_{300110}^{\overline{\mathrm{DR}}}=-\frac{23}{1536} C_{A}^{3} \\
& \beta_{301010}^{\overline{\mathrm{DR}}}=\frac{11}{512} C_{A}^{3} \\
& \beta_{211100}^{\overline{\mathrm{DR}}}=\frac{1}{384}\left(N_{A}+1\right)\left(4 C_{A}+3 C_{R}\right) I_{2}(R) n_{f} \\
& \beta_{300101}^{\overline{\mathrm{DR}}}=-\frac{1}{9216 N_{A}}\left[480 D_{2}(A)+703 C_{A}^{4} N_{A}\right] \\
& \beta_{210020}^{\overline{\mathrm{DR}}}=-\frac{1}{512}\left(4 C_{A}+3 C_{R}\right) n_{f} I_{2}(R) C_{A}^{2} \\
& \beta_{310010}^{\overline{\mathrm{DR}}}=\frac{1}{768} I_{2}(R) C_{A}^{3} n_{f} \\
& \beta_{200003}^{\overline{\mathrm{DR}}}=-\frac{1}{663552 N_{A}}\left[864 C_{A}^{2} D_{2}(A)+11 C_{A}^{6} N_{A}-27648 D_{3}(A)\right] C_{A}
\end{aligned}
$$

$$
\begin{align*}
& \beta_{200102}^{\overline{\mathrm{DR}}}=\frac{1}{6144 N_{A}}\left[480 D_{2}(A)+199 C_{A}^{4} N_{A}\right] C_{A} \\
& \beta_{201002}^{\overline{\mathrm{DR}}}=\frac{1}{2048 N_{A}}\left[96 D_{2}(A)+17 C_{A}^{4} N_{A}\right] C_{A} \\
& \beta_{202001}^{\overline{\mathrm{DR}}}=\frac{3}{128} C_{A}^{3} \\
& \beta_{200300}^{\overline{\mathrm{DR}}}=\frac{1}{768}\left(N_{A}^{2}+13 N_{A}+18\right) C_{A} \\
& \beta_{201101}^{\overline{\mathrm{DR}}}=\frac{3}{256}\left(8+N_{A}\right) C_{A}^{3} \\
& \beta_{200021}^{\overline{\mathrm{DR}}}=-\frac{1}{6144 N_{A}}\left[96 D_{2}(A)+11 C_{A}^{4} N_{A}\right] C_{A} \\
& \beta_{202010}^{\overline{\mathrm{DR}}}=-\frac{1}{64} C_{A}^{2} \\
& \beta_{210002}^{\overline{\mathrm{DR}}}=\frac{1}{18432 N_{A}}\left(4 C_{A}+3 C_{R}\right)\left[96 D_{2}(A)-C_{A}^{4} N_{A}\right] I_{2}(R) n_{f} \\
& \beta_{212000}^{\overline{\mathrm{DR}}}=\frac{1}{768}\left(4 C_{A}+3 C_{R}\right) I_{2}(R) n_{f} \\
& \beta_{211010}^{\overline{\mathrm{DR}}}=-\frac{1}{384}\left(4 C_{A}+3 C_{R}\right) n_{f} I_{2}(R) C_{A} \\
& \beta_{201200}^{\overline{\mathrm{DR}}}=\frac{1}{256}\left(N_{A}^{2}+5 N_{A}+10\right) C_{A} \\
& \beta_{200210}^{\overline{\mathrm{DR}}}=\frac{1}{256}\left(N_{A}-2\right) C_{A}^{2} \\
& \beta_{201110}^{\overline{\mathrm{DR}}}=-\frac{1}{128}\left(N_{A}-2\right) C_{A}^{2} \\
& \beta_{221000}^{\overline{\mathrm{DR}}}=\frac{1}{192}\left(C_{A}+3 C_{R}\right)\left(C_{A}-2 C_{R}\right) I_{2}(R) n_{f} \\
& \beta_{200201}^{\overline{\mathrm{DR}}}=\frac{1}{512}\left(7 N_{A}+46\right) C_{A}^{3} \\
& \beta_{211001}^{\overline{\mathrm{DR}}}=\frac{1}{256}\left(4 C_{A}+3 C_{R}\right) n_{f} I_{2}(R) C_{A}^{2} \\
& \beta_{200012}^{\overline{\mathrm{DR}}}=-\frac{1}{36864 N_{A}}\left[384 D_{2}(A)+11 C_{A}^{4} N_{A}\right] C_{A}^{2} \\
& \beta_{210200}^{\overline{\mathrm{DR}}}=\frac{1}{768}\left(N_{A}+3\right)\left(4 C_{A}+3 C_{R}\right) I_{2}(R) n_{f} \\
& \beta_{210101}^{\overline{\mathrm{DR}}}=\frac{7}{768}\left(4 C_{A}+3 C_{R}\right) n_{f} I_{2}(R) C_{A}^{2} \tag{4.12}
\end{align*}
$$

where

$$
\begin{aligned}
b_{0}= & \frac{1}{4}\left(\frac{11}{3} C_{A}-\frac{4}{3} I_{2}(R) n_{f}\right) \\
b_{1}= & \frac{1}{16}\left(\frac{34}{3} C_{A}^{2}-4 C_{R} I_{2}(R) n_{f}-\frac{20}{3} C_{A} I_{2}(R) n_{f}\right) \\
b_{2}= & \frac{1}{64}\left(\frac{2857}{54} C_{A}^{3}+2 C_{R}^{2} I_{2}(R) n_{f}-\frac{205}{9} C_{R} C_{A} I_{2}(R) n_{f}\right. \\
& \left.-\frac{1415}{27} C_{A}^{2} I_{2}(R) n_{f}+\frac{44}{9} C_{R} I_{2}(R)^{2} n_{f}^{2}+\frac{158}{27} C_{A} I_{2}(R)^{2} n_{f}^{2}\right) \\
b_{3}= & \frac{1}{256}\left[\left(\frac{150653}{486}-\frac{44}{9} \zeta_{3}\right) C_{A}^{4}+C_{A}^{3} I_{2}(R) n_{f}\left(-\frac{39143}{81}+\frac{136}{3} \zeta_{3}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& +C_{A}^{2} C_{R} I_{2}(R) n_{f}\left(\frac{7073}{243}-\frac{656}{9} \zeta_{3}\right)+C_{A} C_{R}^{2} I_{2}(R) n_{f}\left(-\frac{4204}{27}+\frac{352}{9} \zeta_{3}\right) \\
& +46 C_{R}^{3} I_{2}(R) n_{f}+C_{A}^{2} I_{2}(R)^{2} n_{f}^{2}\left(\frac{7930}{81}+\frac{224}{9} \zeta_{3}\right) \\
& +C_{R}^{2} I_{2}(R)^{2} n_{f}^{2}\left(\frac{1352}{27}-\frac{704}{9} \zeta_{3}\right)+C_{A} C_{R} I_{2}(R)^{2} n_{f}^{2}\left(\frac{17152}{243}+\frac{448}{9} \zeta_{3}\right) \\
& +\frac{424}{243} C_{A} I_{2}(R)^{3} n_{f}^{3}+\frac{1232}{243} C_{R} I_{2}(R)^{3} n_{f}^{3} \\
& +\frac{D_{2}(A)}{N_{A}}\left(-\frac{80}{9}+\frac{704}{3} \zeta_{3}\right)+\frac{n_{f} D_{2}(R A)}{N_{A}}\left(\frac{512}{9}-\frac{1664}{3} \zeta_{3}\right) \\
& \left.+\frac{n_{f}^{2} D_{2}(R)}{N_{A}}\left(-\frac{704}{9}+\frac{512}{3} \zeta_{3}\right)\right] \tag{4.13}
\end{align*}
$$

are the one, two, three and four-loop gauge β-function coefficients calculated in DREG. For the fermion mass anomalous dimension, we find

$$
\begin{aligned}
& \gamma_{400000}^{\overline{\mathrm{DR}}}=\gamma_{3}+\frac{91}{768} C_{R}^{2} C_{A}^{2}-\frac{129}{512} C_{A} C_{R}^{3}-\frac{3}{16} I_{2}(R) C_{A} C_{R}^{2} n_{f} \zeta_{3} \\
& +\frac{89}{576} I_{2}(R) C_{A} C_{R}^{2} n_{f}+\frac{29}{5184} I_{2}(R)^{2} C_{A} C_{R} n_{f}^{2}+\frac{3}{16} I_{2}(R) C_{A}^{2} C_{R} n_{f} \zeta_{3} \\
& -\frac{53}{1296} C_{R} C_{A}^{2} I_{2}(R) n_{f}-\frac{19003}{82944} C_{A}^{3} C_{R} \\
& \gamma_{110002}^{\overline{\mathrm{DR}}}=\frac{1}{24576 N_{A}}\left[2784 C_{A} D_{2}(A)+1632 C_{R} D_{2}(A)-53 C_{A}^{5} N_{A}\right. \\
& \left.-11 C_{R} C_{A}^{4} N_{A}\right] C_{R} \\
& \gamma_{110011}^{\overline{\mathrm{DR}}}=-\frac{1}{2048}\left(53 C_{A}+11 C_{R}\right) C_{A}^{3} C_{R} \\
& \gamma_{120010}^{\overline{\mathrm{DR}}}=\frac{1}{256}\left(31 C_{A}+18 C_{R}\right) C_{A}^{2} C_{R} \\
& \gamma_{210010}^{\overline{\mathrm{DR}}}=\frac{3}{2048 N_{A} I_{2}(R)}\left[3 C_{A}^{3} I_{2}(R) N_{A}+64 D_{2}(R A)\right] C_{R} \\
& \gamma_{111001}^{\overline{\mathrm{DR}}}=\frac{1}{1024}\left(53 C_{R}+79 C_{A}\right) C_{A}^{2} C_{R} \\
& \gamma_{020110}^{\overline{\mathrm{DR}}}=-\frac{1}{256}\left[17 C_{A}+17 I_{2}(R) n_{f}-6 C_{R}\right] C_{A} C_{R} \\
& \gamma_{020011}^{\overline{\mathrm{DR}}}=-\frac{1}{3072 N_{A} I_{2}(R)}\left\{384 D_{2}(A) I_{2}(R)-144 C_{A} D_{2}(R A)\right. \\
& \left.+N_{A} I_{2}(R)\left[-51 C_{A}^{3} I_{2}(R) n_{f}-30 C_{A}^{3} C_{R}+37 C_{A}^{4}\right]\right\} C_{R} \\
& \gamma_{310000}^{\overline{\mathrm{DR}}}=-\frac{1}{165888 I_{2}(R) N_{A}} C_{R}\left(46656 D_{2}(R A)\right. \\
& +I_{2}(R) N_{A}\left\{-26505 C_{A}^{3}+C_{A}^{2}\left[355107 C_{R}+23544 I_{2}(R) n_{f}\right]\right. \\
& +2 C_{A}\left[11916 C_{R}^{2}-65508 C_{R} I_{2}(R) n_{f}-3744 I_{2}(R)^{2} n_{f}^{2}\right] \\
& +12 C_{R}\left[7965 C_{R}^{2}-7212 C_{R} I_{2}(R) n_{f}-224 I_{2}(R)^{2} n_{f}^{2}\right] \\
& +2592\left(C_{A}-C_{R}\right)\left[5\left(-11 C_{A}-9 C_{R}\right)\left(C_{A}-2 C_{R}\right)\right. \\
& \left.\left.\left.+4\left(5 C_{A}-16 C_{R}\right) I_{2}(R) n_{f}\right] \zeta_{3}\right\}\right) \\
& \gamma_{110020}^{\overline{\mathrm{DR}}}=-\frac{3}{2048}\left(53 C_{A}+11 C_{R}\right) C_{A}^{2} C_{R}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{211000}^{\overline{\mathrm{DR}}}=-\frac{7}{1024} C_{A}^{2} C_{R} \\
& \gamma_{020020}^{\overline{\mathrm{DR}}}=-\frac{1}{1024 N_{A} I_{2}(R)}\left\{N _ { A } I _ { 2 } (R) \left[-51 C_{A}^{2} I_{2}(R) n_{f}-30 C_{A}^{2} C_{R}\right.\right. \\
& \left.\left.+37 C_{A}^{3}\right]+16 D_{2}(R A)\right\} C_{R} \\
& \gamma_{020101}^{\overline{\mathrm{DR}}}=\frac{1}{1536 N_{A} I_{2}(R)}\left\{N _ { A } I _ { 2 } (R) \left[103 C_{A}^{3}-154 C_{A}^{2} C_{R}\right.\right. \\
& \left.\left.-277 C_{A}^{2} I_{2}(R) n_{f}\right]+720 D_{2}(R A)\right\} C_{R} \\
& \gamma_{110200}^{\overline{\mathrm{DR}}}=\frac{1}{1024}\left(19 C_{R} N_{A}+21 C_{A} N_{A}+95 C_{A}+49 C_{R}\right) C_{R} \\
& \gamma_{021100}^{\overline{\mathrm{DR}}}=-\frac{1}{768}\left[43 I_{2}(R) N_{A} n_{f}+10 C_{R} N_{A}+3 C_{A} N_{A}+35 I_{2}(R) n_{f}-142 C_{R}-5 C_{A}\right] C_{R} \\
& \gamma_{021010}^{\overline{\mathrm{DR}}}=-\frac{1}{768}\left[-51 I_{2}(R) n_{f}-42 C_{R}+79 C_{A}\right] C_{A} C_{R} \\
& \gamma_{110101}^{\overline{\mathrm{DR}}}=\frac{1}{1024}\left(117 C_{R}+211 C_{A}\right) C_{A}^{2} C_{R} \\
& \gamma_{120100}^{\overline{\mathrm{DR}}}=-\frac{1}{32}\left(C_{A}^{2}+6 C_{R}^{2}+10 C_{A} C_{R}\right) C_{R} \\
& \gamma_{200011}^{\overline{\mathrm{DR}}}=-\frac{1}{1024} C_{A}^{4} C_{R} \\
& \gamma_{200101}^{\overline{\mathrm{DR}}}=\frac{7}{512} C_{A}^{3} C_{R} \\
& \gamma_{010003}^{\overline{\mathrm{DR}}}=\frac{1}{442368 N_{A}}\left[-41472 D_{3}(A)+480 C_{A}^{2} D_{2}(A)+37 C_{A}^{6} N_{A}\right] C_{R} \\
& \gamma_{021001}^{\overline{\mathrm{DR}}}=\frac{1}{1536 N_{A} I_{2}(R)}\left\{N_{A} I_{2}(R)\left[-63 C_{A}^{3}-113 C_{A}^{2} I_{2}(R) n_{f}+34 C_{A}^{2} C_{R}\right]\right. \\
& \left.+240 D_{2}(R A)\right\} C_{R} \\
& \gamma_{120001}^{\overline{\mathrm{DR}}}=\frac{1}{1536} C_{R}\left[C_{A}^{3}\left(31 C_{A}+18 C_{R}\right)-\frac{24}{I_{2}(R) N_{A}}\left(19 C_{A}+12 C_{R}\right) D_{2}(R A)\right] \\
& \gamma_{010120}^{\overline{\mathrm{DR}}}=\frac{29}{3072} C_{A}^{2} C_{R} \\
& \gamma_{210100}^{\overline{\mathrm{DR}}}=-\frac{1}{1024}\left(96 C_{R}+7 C_{A}\right) C_{A} C_{R} \\
& \gamma_{010111}^{\overline{\mathrm{DR}}}=-\frac{97}{3072} C_{A}^{3} C_{R} \\
& \gamma_{300010}^{\overline{\mathrm{DR}}}=\frac{1}{1024} C_{A}^{3} C_{R} \\
& \gamma_{300100}^{\overline{\mathrm{DR}}}=-\frac{7}{512} C_{A}^{2} C_{R} \\
& \gamma_{301000}^{\overline{\mathrm{DR}}}=-\frac{3}{512} C_{A}^{2} C_{R} \\
& \gamma_{011002}^{\overline{\mathrm{DR}}}=-\frac{1}{36864 N_{A}}\left[3360 D_{2}(A)+1033 C_{A}^{4} N_{A}\right] C_{R} \\
& \gamma_{010012}^{\overline{\mathrm{DR}}}=\frac{1}{24576 N_{A}}\left[384 D_{2}(A)+37 C_{A}^{4} N_{A}\right] C_{R} C_{A} \\
& \gamma_{010300}^{\overline{\mathrm{DR}}}=-\frac{1}{1536}\left(N_{A}^{2}+57 N_{A}+86\right) C_{R}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{012001}^{\overline{\mathrm{DR}}}=-\frac{1}{1536}\left(3 N_{A}+74\right) C_{A}^{2} C_{R} \\
& \gamma_{011011}^{\overline{\mathrm{DR}}}=\frac{49}{1024} C_{A}^{3} C_{R} \\
& \gamma_{111010}^{\overline{\mathrm{DR}}}=-\frac{1}{512}\left(53 C_{A}+11 C_{R}\right) C_{A} C_{R} \\
& \gamma_{200020}^{\overline{\mathrm{DR}}}=-\frac{3}{1024} C_{A}^{3} C_{R} \\
& \gamma_{201010}^{\overline{\mathrm{DR}}}=-\frac{1}{256} C_{A}^{2} C_{R} \\
& \gamma_{200002}^{\overline{\mathrm{DR}}}=-\frac{1}{12288 N_{A}}\left[-96 D_{2}(A)+C_{A}^{4} N_{A}\right] C_{R} C_{A} N_{A} \\
& \gamma_{202000}^{\overline{\mathrm{DR}}}=\frac{1}{512} C_{A} C_{R} \\
& \gamma_{201001}^{\overline{\mathrm{DR}}}=\frac{3}{512} C_{A}^{3} C_{R} \\
& \gamma_{220000}^{\overline{\mathrm{DR}}}=\frac{1}{18432 I_{2}(R) N_{A}} C_{R}\left\{-288 D_{2}(R A)\left(1+72 \zeta_{3}\right)\right. \\
& +2 C_{A}^{3} I_{2}(R) N_{A}\left(-1295+10080 \zeta_{3}\right) \\
& +4\left[3 C_{R}^{3} I_{2}(R) N_{A}\left(1544-5760 \zeta_{3}\right)+2592 D_{2}(R) n_{f}\left(1-2 \zeta_{3}\right)\right. \\
& \left.+64 C_{R} I_{2}(R)^{3} N_{A} n_{f}^{2}\left(-10+3 \zeta_{3}\right)-2 C_{R}^{2} I_{2}(R)^{2} N_{A} n_{f}\left(571+1008 \zeta_{3}\right)\right] \\
& +C_{A}^{2} I_{2}(R) N_{A}\left[2354 I_{2}(R) n_{f}-2784 I_{2}(R) n_{f} \zeta_{3}-12 C_{R}\left(721+7704 \zeta_{3}\right)\right] \\
& +2 C_{A} I_{2}(R) N_{A}\left[24 I_{2}(R)^{2} n_{f}^{2}\left(17-16 \zeta_{3}\right)\right. \\
& \left.\left.+C_{R} I_{2}(R) n_{f}\left(7444+5856 \zeta_{3}\right)+C_{R}^{2}\left(9428+71136 \zeta_{3}\right)\right]\right\} \\
& \gamma_{011020}^{\overline{\mathrm{DR}}}=\frac{181}{3072} C_{A}^{2} C_{R} \\
& \gamma_{010021}^{\overline{\mathrm{DR}}}=\frac{1}{4096 N_{A}}\left[224 D_{2}(A)+37 C_{A}^{4} N_{A}\right] C_{R} \\
& \gamma_{200200}^{\overline{\mathrm{DR}}}=\frac{1}{512}\left(N_{A}+3\right) C_{A} C_{R} \\
& \gamma_{201100}^{\overline{\mathrm{DR}}}=\frac{1}{256}\left(N_{A}+1\right) C_{A} C_{R} \\
& \gamma_{300001}^{\overline{\mathrm{DR}}}=\frac{1}{6144 N_{A}}\left[-96 D_{2}(A)+C_{A}^{4} N_{A}\right] C_{R} \\
& \gamma_{200110}^{\overline{\mathrm{DR}}}=\frac{1}{256} C_{A}^{2} C_{R} \\
& \gamma_{111100}^{\overline{\mathrm{DR}}}=\frac{1}{512}\left(37 C_{A} N_{A}+15 C_{R} N_{A}+19 C_{R}+21 C_{A}\right) C_{R} \\
& \gamma_{010030}^{\overline{\mathrm{DR}}}=\frac{37}{2048} C_{A}^{3} C_{R} \\
& \gamma_{020200}^{\overline{\mathrm{DR}}}=\frac{1}{1536}\left[-35 I_{2}(R) N_{A} n_{f}+39 C_{A} N_{A}-38 C_{R} N_{A}+302 C_{R}\right. \\
& \left.-121 I_{2}(R) n_{f}-23 C_{A}\right] C_{R} \\
& \gamma_{121000}^{\overline{\mathrm{DR}}}=\frac{1}{256}\left(-24 C_{R}^{2}-22 C_{A} C_{R}+27 C_{A}^{2}\right) C_{R}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{040000}^{\overline{\mathrm{DR}}}=-\frac{1}{1536 I_{2}(R) N_{A}\left[-25 C_{A}^{4} N_{A}+12 D_{2}(A)\left(2+N_{A}\right)\right]} \\
& C_{R}\left[-16320 C_{A}^{3} D_{2}(R A) I_{2}(R) N_{A} n_{f}\right. \\
& +97920 C_{A}^{2} C_{R} D_{2}(R A) I_{2}(R) N_{A} n_{f}-19584 D_{2}(R A)^{2}\left(2+N_{A}\right) n_{f} \\
& +100 C_{A}^{5} I_{2}(R) N_{A}^{2}\left[-288 C_{R} I_{2}(R) n_{f}-15 I_{2}(R)^{2} n_{f}^{2}\right. \\
& \left.+2 C_{R}^{2}\left(-126-432 \zeta_{3}\right)\right]-100 C_{A}^{7} I_{2}(R) N_{A}^{2}\left(-23+240 \zeta_{3}\right) \\
& +100 C_{A}^{6} I_{2}(R) N_{A}^{2}\left\{15 C_{R}+75 I_{2}(R) n_{f}-6\left[-132 C_{R}+I_{2}(R) n_{f}\right] \zeta_{3}\right\} \\
& +25 C_{A}^{4} N_{A}\left\{1344 C_{R}^{2} I_{2}(R)^{2} N_{A} n_{f}+180 C_{R} I_{2}(R)^{3} N_{A} n_{f}^{2}\right. \\
& -12 n_{f}\left[5 I_{2}(R)^{4} N_{A} n_{f}^{2}+24 D_{2}(R)\left(7-2 \zeta_{3}\right)\right] \\
& \left.+192 D_{2}(R A)\left(-1+12 \zeta_{3}\right)+3 C_{R}^{3} I_{2}(R) N_{A}\left(368+384 \zeta_{3}\right)\right\} \\
& -12 D_{2}(A)\left(-4032 D_{2}(R) n_{f}+N_{A}\left\{1104 C_{R}^{3} I_{2}(R)\left(2+N_{A}\right)\right.\right. \\
& -6\left[336 D_{2}(R)-16 C_{R}^{2} I_{2}(R)^{2}\left(79+14 N_{A}\right)\right] n_{f} \\
& \left.+180 C_{R} I_{2}(R)^{3}\left(2+N_{A}\right) n_{f}^{2}-60 I_{2}(R)^{4}\left(2+N_{A}\right) n_{f}^{3}\right\} \\
& +4 C_{A} I_{2}(R) N_{A}\left[-24 C_{R} I_{2}(R)\left(41+12 N_{A}\right) n_{f}-15 I_{2}(R)^{2}\left(2+N_{A}\right) n_{f}^{2}\right. \\
& \left.+2 C_{R}^{2}\left(2+N_{A}\right)\left(-126-432 \zeta_{3}\right)\right]+4 C_{A}^{3} I_{2}(R) N_{A}\left(2+N_{A}\right)\left(23-240 \zeta_{3}\right) \\
& -96\left(2+N_{A}\right)\left[-12 C_{R}^{3} I_{2}(R) N_{A}-6 D_{2}(R) n_{f}\right] \zeta_{3} \\
& +192 D_{2}(R A)\left(2+N_{A}\right)\left(-1+12 \zeta_{3}\right) \\
& +4 C_{A}^{2} I_{2}(R) N_{A}\left\{C_{R}\left(2+N_{A}\right)\left(15+792 \zeta_{3}\right)\right. \\
& \left.\left.\left.+I_{2}(R) n_{f}\left[184+75 N_{A}-6\left(2+N_{A}\right) \zeta_{3}\right]\right\}\right)\right] \\
& \gamma_{010201}^{\overline{\mathrm{DR}}}=-\frac{1}{1024}\left(23 N_{A}+218\right) C_{A}^{2} C_{R} \\
& \gamma_{010210}^{\overline{\mathrm{DR}}}=-\frac{3}{512}\left(3 N_{A}-2\right) C_{A} C_{R} \\
& \gamma_{112000}^{\overline{\mathrm{DR}}}=-\frac{1}{1024}\left(8 C_{A} N_{A}-2 C_{R} N_{A}-37 C_{A}-15 C_{R}\right) C_{R} \\
& \gamma_{110110}^{\overline{\mathrm{DR}}}=\frac{1}{512}\left(53 C_{A}+11 C_{R}\right) C_{A} C_{R} \\
& \gamma_{130000}^{\overline{\mathrm{DR}}}=-\frac{1}{3072 I_{2}(R) N_{A}} C_{R}\left(-576 D_{2}(R A)+I_{2}(R) N_{A}\left\{352 C_{A}^{3}+616 C_{A}^{2} C_{R}\right.\right. \\
& -6040 C_{A} C_{R}^{2}+6992 C_{R}^{3}-100 C_{A}^{2} I_{2}(R) n_{f}-1388 C_{A} C_{R} I_{2}(R) n_{f} \\
& +3920 C_{R}^{2} I_{2}(R) n_{f}+168 C_{A} I_{2}(R)^{2} n_{f}^{2}-88 C_{R} I_{2}(R)^{2} n_{f}^{2} \\
& +48\left(C_{A}-C_{R}\right)\left[3\left(8 C_{A}-13 C_{R}\right)\left(C_{A}-2 C_{R}\right)\right. \\
& \left.\left.\left.-2\left(16 C_{A}-32 C_{R}\right) I_{2}(R) n_{f}+8 I_{2}(R)^{2} n_{f}^{2}\right] \zeta_{3}\right\}\right) \\
& \gamma_{022000}^{\overline{\mathrm{DR}}}=-\frac{1}{1536}\left[8 C_{A} N_{A}-16 C_{R} N_{A}-4 I_{2}(R) N_{A} n_{f}+43 I_{2}(R) n_{f}\right. \\
& \left.-50 C_{R}+57 C_{A}\right] C_{R} \\
& \gamma_{020002}^{\overline{\mathrm{DR}}}=\frac{1}{36864 I_{2}(R) N_{A}\left[-25 C_{A}^{4} N_{A}+12 D_{2}(A)\left(2+N_{A}\right)\right]}
\end{aligned}
$$

$$
\begin{align*}
& C_{R}\left(-1880064 D_{3}(A) D_{2}(R A)+536400 C_{A}^{6} D_{2}(R A) N_{A}\right. \\
& -391680 C_{A}^{3} D_{3}(A) I_{2}(R) N_{A}+4 C_{A}^{5} D_{2}(A) I_{2}(R)\left(22778-111 N_{A}\right) N_{A} \\
& +925 C_{A}^{9} I_{2}(R) N_{A}^{2}+1152 C_{A} D_{2}(A)^{2} I_{2}(R)\left(286+7 N_{A}\right) \\
& +89856 D_{3}(R A A)\left[-25 C_{A}^{4} N_{A}+12 D_{2}(A)\left(2+N_{A}\right)\right] \\
& +192 C_{A}^{2}\left[12240 C_{R} D_{3}(A) I_{2}(R) N_{A}+D_{2}(A) D_{2}(R A)\left(8198+19 N_{A}\right)\right] \\
& -75 C_{A}^{8} I_{2}(R) N_{A}^{2}\left[10 C_{R}+17 I_{2}(R) n_{f}\right] \\
& +12 C_{A}^{4} D_{2}(A) I_{2}(R) N_{A}\left[-C_{R}\left(43540-30 N_{A}\right)\right. \\
& \left.+3 I_{2}(R)\left(2634+17 N_{A}\right) n_{f}\right]+3456\left\{-272 D_{3}(A) D_{2}(R A) N_{A}\right. \\
& \left.\left.+D_{2}(A)^{2} I_{2}(R)\left[-2 C_{R}\left(290+9 N_{A}\right)-13 I_{2}(R)\left(2+N_{A}\right) n_{f}\right]\right\}\right) \\
& \gamma_{030010}^{\overline{\mathrm{DR}}}=\frac{1}{256}\left[3 C_{A}-10 C_{R}-30 I_{2}(R) n_{f}\right] C_{A}^{2} C_{R} \\
& \gamma_{011110}^{\overline{\mathrm{DR}}}=\frac{1}{768}\left(11 N_{A}-50\right) C_{A} C_{R} \\
& \gamma_{012010}^{\overline{\mathrm{DR}}}=\frac{1}{768}\left(N_{A}+38\right) C_{A} C_{R} \\
& \gamma_{030001}^{\overline{\mathrm{DR}}}=-\frac{1}{1536 N_{A} I_{2}(R)}\left\{384 C_{A} D_{2}(R A)-864 C_{R} D_{2}(R A)\right. \\
& +N_{A} I_{2}(R)\left[10 C_{A}^{3} C_{R}-3 C_{A}^{4}+30 C_{A}^{3} I_{2}(R) n_{f}\right] \\
& \left.-528 D_{2}(R A) I_{2}(R) n_{f}\right\} C_{R} \\
& \gamma_{010102}^{\overline{\mathrm{DR}}}=-\frac{1}{36864 N_{A}}\left[7008 D_{2}(A)+2537 C_{A}^{4} N_{A}\right] C_{R} \\
& \gamma_{030100}^{\overline{\mathrm{DR}}}=\frac{1}{384}\left[13 C_{A}^{2}+8 C_{A} I_{2}(R) n_{f}+216 C_{R}^{2}+132 C_{R} I_{2}(R) n_{f}\right. \\
& \left.-122 C_{A} C_{R}\right] C_{R} \\
& \gamma_{031000}^{\overline{\mathrm{DR}}}=\frac{1}{384}\left[11 C_{A}^{2}+108 C_{R}^{2}-41 C_{A} I_{2}(R) n_{f}-76 C_{A} C_{R}+66 C_{R} I_{2}(R) n_{f}\right] C_{R} \\
& \gamma_{210001}^{\overline{\mathrm{RK}}}=-\frac{3}{4096 N_{A} I_{2}(R)}\left(64 C_{A} D_{2}(R A)+32 D_{2}(A) I_{2}(R)-C_{A}^{4} I_{2}(R) N_{A}\right) C_{R} \\
& \gamma_{011101}^{\overline{\mathrm{DR}}}=-\frac{1}{1536}\left(53 N_{A}+320\right) C_{A}^{2} C_{R} \\
& \gamma_{011200}^{\overline{\mathrm{DR}}}=-\frac{1}{512}\left(5 N_{A}^{2}+21 N_{A}+46\right) C_{R} \\
& \gamma_{012100}^{\overline{\mathrm{DR}}}=-\frac{1}{768}\left(N_{A}^{2}+31 N_{A}+22\right) C_{R} \\
& \gamma_{013000}^{\overline{\mathrm{DR}}}=\frac{1}{768}\left(N_{A}-10\right) C_{R} \tag{4.14}
\end{align*}
$$

where

$$
\begin{align*}
\gamma_{3}= & \frac{1}{256}\left[C_{R}^{4}\left(-\frac{1261}{8}-336 \zeta_{3}\right)+C_{R}^{3} C_{A}\left(\frac{15349}{12}+316 \zeta_{3}\right)\right. \\
& +C_{R}^{2} C_{A}^{2}\left(-\frac{34045}{36}-152 \zeta_{3}+440 \zeta_{5}\right)+C_{R} C_{A}^{3}\left(\frac{70055}{72}+\frac{1418}{9} \zeta_{3}-440 \zeta_{5}\right) \\
& +C_{R}^{3} I_{2}(R) n_{f}\left(-\frac{280}{3}+552 \zeta_{3}-480 \zeta_{5}\right) \\
& +C_{R}^{2} C_{A} I_{2}(R) n_{f}\left(-\frac{8819}{27}+368 \zeta_{3}-264 \zeta_{4}+80 \zeta_{5}\right) \\
& +C_{R} C_{A}^{2} I_{2}(R) n_{f}\left(-\frac{65459}{162}-\frac{2684}{3} \zeta_{3}+264 \zeta_{4}+400 \zeta_{5}\right) \\
& +C_{R}^{2} I_{2}(R)^{2} n_{f}^{2}\left(\frac{304}{27}-160 \zeta_{3}+96 \zeta_{4}\right) \\
& +C_{R} I_{2}(R)^{3} n_{f}^{3}\left(-\frac{664}{81}+\frac{128}{9} \zeta_{3}\right)+\frac{D_{2}(R A)}{d_{R}}\left(-32+240 \zeta_{3}\right) \\
& \left.+C_{R} C_{A} I_{2}(R)^{2} n_{f}^{2}\left(\frac{1342}{81}+160 \zeta_{3}-96 \zeta_{4}\right)+\frac{n_{f} D_{2}(R)}{d_{R}}\left(64-480 \zeta_{3}\right)\right] . \tag{4.15}
\end{align*}
$$

5. The four-loop supersymmetric case

Our conventions are such that substituting in the above equations the results of tables 2 2 a corresponds to a gauge theory with n_{f} sets of Dirac fermions transforming according to the fundamental representation, or n_{f} sets of fundamental two component fermions with n_{f} sets of anti-fundamental two component fermions.

To extract the supersymmetric case we must make the replacements

$$
\begin{align*}
C_{R} & \rightarrow C_{A} \\
I_{2}(R) & \rightarrow C_{A} \\
n_{f} & \rightarrow \frac{1}{2} \\
D_{2}(R) & \rightarrow D_{2}(A) \\
D_{2}(R A) & \rightarrow D_{2}(A) \\
D_{3}(R A A) & \rightarrow D_{3}(A) \\
\alpha_{e} & =v_{3}=\alpha_{s} \\
v_{1} & =v_{2}=v_{4}=0 . \tag{5.1}
\end{align*}
$$

With these substitutions we can compare our results for β_{s} with the four-loop results for the gauge β-function $\beta_{s}^{\text {SYM }}$ of SQCD which was presented in ref. [6]):

$$
\begin{equation*}
\beta_{s}^{\mathrm{SYM}}=-\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left[\frac{3}{4} C_{A}+\frac{3}{8} C_{A}^{2} \frac{\alpha_{s}}{\pi}+\frac{21}{64} C_{A}^{3}\left(\frac{\alpha_{s}}{\pi}\right)^{2}+\frac{51}{128} C_{A}^{4}\left(\frac{\alpha_{s}}{\pi}\right)^{3}\right]+\mathcal{O}\left(\alpha_{s}^{6}\right) . \tag{5.2}
\end{equation*}
$$

We indeed find that using eq. (5.1) in eq. (4.3) precisely reproduces eq. (5.2).
We have also checked that in the same supersymmetric limit, eq. (4.7) reproduces the three-loop SQCD β-function.

Turning now to the case of softly-broken supersymmetry, there exists an exact result for γ_{m} [8]:

$$
\begin{equation*}
\gamma_{m}^{\mathrm{SYM}}=\pi \alpha_{s} \frac{\mathrm{~d}}{\mathrm{~d} \alpha_{\mathrm{s}}}\left[\frac{\beta_{s}^{\mathrm{SYM}}}{\alpha_{s}}\right], \tag{5.3}
\end{equation*}
$$

whence it follows that

$$
\begin{equation*}
\gamma_{m}^{\mathrm{SYM}}=-\left(\frac{\alpha_{s}}{\pi}\right)\left[\frac{3}{4} C_{A}+\frac{3}{4} C_{A}^{2} \frac{\alpha_{s}}{\pi}+\frac{63}{64} C_{A}^{3}\left(\frac{\alpha_{s}}{\pi}\right)^{2}+\frac{51}{32} C_{A}^{4}\left(\frac{\alpha_{s}}{\pi}\right)^{3}\right]+\mathcal{O}\left(\alpha_{s}^{5}\right) . \tag{5.4}
\end{equation*}
$$

Using eq. (5.1) in eq. (4.6) precisely reproduces eq. (5.4) in similar fashion.
The invariant $D_{3}(A)$ does not feature in either calculation, and the dependence on $D_{2}(A), N_{A}, \zeta_{3}, \zeta_{4}$ and ζ_{5} all cancel, although they appear in individual terms. It is tempting to speculate that this absence of higher order invariants and transcendental numbers (other than π) is related to the existence of the NSVZ scheme, in which the gauge β-function for any simple gauge group is given (in the supersymmetric case without matter fields) by the expression (24, 25)

$$
\begin{equation*}
\beta_{s}^{\mathrm{NSVZ}}=-\frac{3}{4} C_{A}\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left(1-\frac{C_{A} \alpha_{s}}{2 \pi}\right)^{-1} \tag{5.5}
\end{equation*}
$$

which is manifestly free of them to all orders. It is natural to conjecture that the same property holds in the DRED scheme. For discussion of the relationship between $\beta_{s}^{\mathrm{NSVZ}}$ and $\beta_{s}^{\overline{\mathrm{DR}}}$ see ref. [7].

6. Discussion

In this paper we have applied DRED to gauge theories with gauge groups $\operatorname{SU}(N), \mathrm{SO}(N)$ and $\operatorname{Sp}(N)$, and calculated both the gauge β-function and the mass anomalous dimension to the four-loop level. These calculations required careful treatment of the evanescent Yukawa and quartic couplings of the ε-scalar. In the supersymmetric limit we explicitly verified that the β-function for the evanescent Yukawa coupling reproduces the gauge β-function through three loops.

The results for $\beta_{s}^{\overline{\mathrm{DR}}}$ and $\gamma_{m}^{\overline{\mathrm{DR}}}$ in the special case of QCD as described in ref. (1] and [2] are easily obtained from the results of this paper by specialising to the $\mathrm{SU}(N)$ case, and setting $N=3$ and $v_{4}=0$, with the fermions in the fundamental representation.

Predictions based on theories with low energy supersymmetry require careful consideration of the transition between the $\overline{\mathrm{MS}}$ and $\overline{\mathrm{DR}}$ renormalisation schemes. If, for example, the decoupling of supersymmetric particles is carried out in several steps (as in split supersymmetry, for example [26]) then it is essential to take into account the evanescent couplings (for a recent discussion and treatment of the running of α_{s} and m_{b} in the MSSM, see ref. (27].

A. Group theory

We consider a gauge group \mathcal{G} with generators R^{a} satisfying 4

$$
\begin{equation*}
\left[R^{a}, R^{b}\right]=i f^{a b c} R^{c} . \tag{A.1}
\end{equation*}
$$

[^3]We work throughout with a fermion representation consisting of n_{f} sets of Dirac fermions or $2 n_{f}$ sets of two-component fermions, in irreducible representations with identical Casimirs, using R^{a} to denote the generators in one such representation. Thus $R^{a} R^{a}$ is proportional to the unit matrix:

$$
\begin{equation*}
R^{a} R^{a}=C_{R} \cdot I \tag{A.2}
\end{equation*}
$$

For the adjoint representation we have

$$
\begin{equation*}
C_{A} \delta_{a b}=f_{a c d} f_{b c d} \tag{A.3}
\end{equation*}
$$

$I_{2}(R)$ is defined by

$$
\begin{equation*}
\operatorname{Tr}\left[R^{a} R^{b}\right]=I_{2}(R) \delta^{a b} \tag{A.4}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
C_{R} d_{R}=I_{2}(R) N_{A} \tag{A.5}
\end{equation*}
$$

where N_{A} is the number of generators and d_{R} is the dimensionality of the representation R. Evidently $I_{2}(A)=C_{A}$. The fully symmetric tensors $d_{R}^{a b c d}$ and $d_{A}^{a b c d}$ are defined by

$$
\begin{align*}
d_{R}^{a b c d} & =\frac{1}{6} \operatorname{Tr}\left[R^{(a} R^{b} R^{c} R^{d)}\right] \\
d_{A}^{a b c d} & =\frac{1}{6} \operatorname{Tr}\left[F^{(a} F^{b} F^{c} F^{d)}\right] \tag{A.6}
\end{align*}
$$

where

$$
\begin{equation*}
\left(F^{a}\right)^{b c}=i f^{b a c} \tag{A.7}
\end{equation*}
$$

and

$$
\begin{align*}
R^{(a} R^{b} R^{c} R^{d)} & =R^{a} R^{b} R^{c} R^{d}+R^{a} R^{b} R^{d} R^{c}+R^{a} R^{c} R^{b} R^{d} \\
& +R^{a} R^{c} R^{d} R^{b}+R^{a} R^{d} R^{b} R^{c}+R^{a} R^{d} R^{c} R^{b} \tag{A.8}
\end{align*}
$$

(similarly for $F^{(a} F^{b} F^{c} F^{d)}$).
The additional tensor invariants occurring in our results for β_{s} and γ_{m} are defined as

$$
\begin{align*}
D_{2}(A) & =d_{A}^{a b c d} d_{A}^{a b c d} \\
D_{2}(R A) & =d_{R}^{a b c d} d_{A}^{a b c d} \\
D_{3}(A) & =d_{A}^{a b c d} d_{A}^{c d e f} d_{A}^{a b e f} \\
D_{3}(R A A) & =d_{R}^{a b c d} d_{A}^{c d e f} d_{A}^{a b e f} \tag{A.9}
\end{align*}
$$

In table 24 we present results for the various tensor invariants for the groups $\operatorname{SU}(N)$, $\mathrm{SO}(N)$ and $\operatorname{Sp}(N)$, when the fermion representation R is the fundamental representation. In each case the constant b reflects the arbitrariness in the choice of normalisation of the generators (see eq. (3.5) for $\mathrm{SU}(N)$).

B. The groups $\operatorname{SO}(N)$ and $\operatorname{Sp}(N)$

In this section we derive explicit expressions for the β-functions for the ε-scalar quartic interactions for the groups $\mathrm{SO}(N)$ and $\operatorname{Sp}(N)$. These may also be derived from eqs. (3.41) using tables 3, 0 .

Group	$\mathrm{SU}(N)$
C_{A}	$b N$
C_{R}	$b \frac{N^{2}-1}{2 N}$
$I_{2}(A)$	$b N$
$I_{2}(R)$	$\frac{b}{2}$
N_{A}	$N^{2}-1$
$D_{2}(A)$	$\frac{b^{4}}{24}\left(N^{2}-1\right)\left(N^{2}+36\right) N^{2}$
$D_{2}(R A)$	$\frac{b^{4}}{48} N\left(N^{2}-1\right)\left(N^{2}+6\right)$
$D_{2}(R)$	$\frac{b^{4}}{96 N^{2}}\left(N^{2}-1\right)\left(18-6 N^{2}+N^{4}\right)$
$D_{3}(A)$	$\frac{b^{6}}{216} N^{2}\left(N^{2}-1\right)\left(324+135 N^{2}+N^{4}\right)$
$D_{3}(R A A)$	$\frac{b^{6}}{432} N^{3}\left(N^{2}-1\right)\left(51+N^{2}\right)$

Table 2: $\mathrm{SU}(N)$ Group invariants (here R is the fundamental representation).

Group	$\mathrm{SO}(N)$
C_{A}	$b(N-2)$
C_{R}	$\frac{b}{2}(N-1)$
$I_{2}(A)$	$b(N-2)$
$I_{2}(R)$	b
N_{A}	$\frac{1}{2} N(N-1)$
$D_{2}(A)$	$\frac{b^{4}}{48} N(N-1)(N-2)\left(-296+138 N-15 N^{2}+N^{3}\right)$
$D_{2}(R A)$	$\frac{b^{4}}{48} N(N-1)(N-2)\left(22-7 N+N^{2}\right)$
$D_{2}(R)$	$\frac{b^{4}}{48} N(N-1)\left(4-N+N^{2}\right)$
$D_{3}(A)$	$\frac{b^{6}}{864}(N-2)(N-1) N\left(-29440+23272 N-7018 N^{2}+971 N^{3}-47 N^{4}+2 N^{5}\right)$
$D_{3}(R A A)$	$\frac{b^{6}}{864} N(N-2)(N-1)\left(2048-1582 N+387 N^{2}-31 N^{3}+2 N^{4}\right)$

Table 3: $\mathrm{SO}(N)$ Group invariants (here R is the fundamental representation).

B. 1 The case $\mathcal{G}=\mathrm{SO}(N)$

Let us consider $\mathrm{SO}(N)$. The defining representation of the generators of $\mathrm{SO}(N)$ is given by the set of matrices

$$
\begin{equation*}
\left(M_{[i j]}\right)_{k l}=-i\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{k j}\right) \tag{B.1}
\end{equation*}
$$

satisfying the algebra

$$
\begin{equation*}
\left[M_{[i j]}, M_{[k l]}\right]=-i\left(\delta_{j k} M_{[i l]}-\delta_{i k} M_{[j l]}-\delta_{j l} M_{[i k]}+\delta_{i l} M_{[j k]}\right) \tag{B.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\left[M_{[i j]}, M_{[k l]}\right]=i f_{[i j][k l][m n]} M_{[m n]} \tag{B.3}
\end{equation*}
$$

where the structure constants are given by

$$
\begin{equation*}
f_{[i j][k l][m n]}=\frac{1}{2}\left[\delta_{i k} \delta_{j m} \delta_{l n}+\ldots(7 \text { terms })\right] \tag{B.4}
\end{equation*}
$$

Group	$\operatorname{Sp}(N)$
C_{A}	$b(N+2)$
C_{R}	$\frac{b}{4}(N+1)$
$I_{2}(A)$	$b(N+2)$
$I_{2}(R)$	$\frac{b}{2}$
N_{A}	$\frac{1}{2} N(N+1)$
$D_{2}(A)$	$\frac{b^{4}}{768} N(N+1)(N+2)\left(296+138 N+15 N^{2}+N^{3}\right)$
$D_{2}(R A)$	$\frac{b^{4}}{768} N(N+1)(N+2)\left(22+7 N+N^{2}\right)$
$D_{2}(R)$	$\frac{b^{4}}{768} N(N+1)\left(4+N+N^{2}\right)$
$D_{3}(A)$	$\frac{b^{6}}{55296}(N+2)(N+1) N\left(29440+23272 N+7018 N^{2}+971 N^{3}+47 N^{4}+2 N^{5}\right)$
$D_{3}(R A A)$	$\frac{b^{6}}{55296} N(N+2)(N+1)\left(2048+1582 N+387 N^{2}+31 N^{3}+2 N^{4}\right)$

Table 4: $\operatorname{Sp}(N)$ Group invariants (here R is the fundamental representation).
such that they are antisymmetric in $i j, k l$, and $m n$ exchange. With this normalisation of the generators it is straightforward to show that the adjoint quadratic Casimir C_{A} is given by

$$
\begin{equation*}
f_{[i j][k][m n]} f_{[i j][k l][p q]}=C_{A}\left(\delta_{m p} \delta_{n q}-\delta_{m q} \delta_{n p}\right) \tag{B.5}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{A}=2(N-2) . \tag{B.6}
\end{equation*}
$$

We will, however, present results for an arbitrary normalisation of the generators such that

$$
\begin{equation*}
C_{A}=b(N-2), \tag{B.7}
\end{equation*}
$$

where b is a constant. Useful checks on our calculations will be provided by the isomorphisms

$$
\begin{equation*}
\mathrm{SO}(3) \equiv \frac{S U(2)}{Z_{2}} \tag{B.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{SO}(6) \equiv \frac{\mathrm{SU}(4)}{Z_{2}} \tag{B.9}
\end{equation*}
$$

which mean that the Lie algebras of $\mathrm{SO}(3)$ and $\mathrm{SU}(2)$, and of $\mathrm{SO}(6)$ and $\mathrm{SU}(4)$ are identical. Note that to compare our result for $\mathrm{SO}(3)$ with the corresponding result for $\mathrm{SU}(2)$ (where with the conventional normalisation we have $C_{A}=2$) we will need to set $b=2$, while to compare $\mathrm{SO}(6)$ with $\mathrm{SU}(4)$ we will similarly need to set $b=1$.

The basis for 4 -tensors for $\mathrm{SO}(N)$ for $N \geq 4$ has $\gamma=6$ and can be chosen to be ${ }^{5}$ (we

[^4]adopt a shorthand notation with $\left[i_{1} i_{2}\right] \rightarrow i$ etc.):
\[

$$
\begin{align*}
P_{1} & =\delta_{i j} \delta_{k l}, \\
P_{2} & =\delta_{i k} \delta_{j l}, \\
P_{3} & =\delta_{i l} \delta_{k j}, \\
P_{4} & =f_{i j m} f_{k l m}, \\
P_{5} & =f_{i k m} f_{j l m}, \\
P_{6} & =\operatorname{tr}\left[F_{i} F_{j} F_{k} F_{l}\right], \tag{B.10}
\end{align*}
$$
\]

where $\left(F_{i}\right)_{m n}=f_{\text {min }}$.
Some useful identities for reduction of various 4-tensors to the basis are as follows:

$$
\begin{align*}
\operatorname{Tr}\left[F_{i} F_{j} F_{p} F_{k} F_{l} F_{p}\right]= & \frac{b^{3}}{2}(N-4)\left(-2 P_{1}+2 P_{2}+P_{3}\right) \\
& +\frac{b^{2}}{4}(N-8)\left(P_{4}-2 P_{5}\right)-\frac{b}{2}(N-2) P_{6} \tag{B.11}\\
\operatorname{Tr}\left[F_{i} F_{m} F_{j} F_{n}\right]\left(F_{k} F_{l}\right)_{m n}= & \frac{b^{3}}{2}(N-4)\left(-2 P_{1}+P_{2}+P_{3}\right) \\
& -\frac{b^{2}}{4}(N-8) P_{4}+\frac{b^{2}}{2}(N-8) P_{5} . \tag{B.12}
\end{align*}
$$

It is interesting that this doesn't involve the basis element P_{6}.

$$
\begin{align*}
\operatorname{Tr}\left[F_{i} F_{j} F_{m} F_{n}\right] \operatorname{Tr}\left[F_{k} F_{l} F_{m} F_{n}\right]= & \frac{b^{4}}{4}(N-2)(N-4)\left(6 P_{1}-P_{2}-P_{3}\right) \\
& +\frac{b^{3}}{8}\left(N^{3}-6 N^{2}+16 N-24\right) P_{4} \\
& -\frac{b^{3}}{4} N(N-6) P_{5} \\
& +\frac{b^{2}}{4}\left(N^{2}-6 N+20\right) P_{6} \tag{B.13}\\
\operatorname{Tr}\left[F_{i} F_{m} F_{j} F_{n} F_{k} F_{m} F_{l} F_{n}\right]= & \frac{b^{4}}{4}(N-2)(N-4)\left(P_{1}+P_{3}\right) \\
& +\frac{b^{3}}{8}\left(N^{2}-14 N+32\right)\left(-2 P_{4}+P_{5}\right) \\
& -\frac{b^{2}}{4}(N-8) P_{6} \tag{B.14}
\end{align*}
$$

The results for the one-loop β-functions in a basis as in eq. (3.15) and with v_{i} defined as for $\operatorname{SU}(N)$ are as follows:

$$
\begin{aligned}
\beta_{v_{1}}= & 8 v_{1}^{2}+2\left(N^{2}-N+2\right) v_{1} v_{2}-4 b(N-2) v_{1} v_{3}+6 b^{2}(N-2)^{2} v_{1} v_{4} \\
& +12 v_{2}^{2}+8 b(N-2) v_{2} v_{3}+8 b^{2}(N-2)^{2} v_{2} v_{4} \\
& +20 b^{4}(N-2)(N-4) v_{4}^{2}+16 b^{3}(N-4) v_{3} v_{4}-12 b(N-2) v_{1} \alpha_{s},
\end{aligned}
$$

$$
\begin{align*}
\beta_{v_{2}}= & \left(N^{2}-N+8\right) v_{2}^{2}+12 v_{1} v_{2}-4 b(N-2) v_{2} v_{3}+6 b^{2}(N-2)^{2} v_{2} v_{4} \\
& -8 b^{3}(N-4) v_{3} v_{4}+6 b^{4}(N-2)(N-4) v_{4}^{2}-12 b(N-2) v_{2} \alpha_{s} \\
\beta_{v_{3}}= & 4 b(N-2) v_{3}^{2}+12 v_{1} v_{3}-4 v_{2} v_{3}-4 b(N-2) v_{2} v_{4} \\
& +2 b^{2}\left(N^{2}-6 N+20\right) v_{3} v_{4}-4 b^{3}(N-4) v_{4}^{2}-12 b(N-2) v_{3} \alpha_{s} \\
\beta_{v_{4}}= & \frac{1}{2} b^{2}\left(3 N^{2}-28 N+140\right) v_{4}^{2}+12 v_{1} v_{4}+20 v_{2} v_{4}-2 v_{3}^{2} \\
& -2 b(N-2) v_{3} v_{4}-12 b(N-2) v_{4} \alpha_{s}+6 \alpha_{s}^{2} \tag{B.15}
\end{align*}
$$

If we set $N=6$ and $b=1$ in eq. (B.15), we reproduce precisely the results obtained by setting $N=4$ in eq. (3.19). Similarly, if we set $N=3$ and $b=2$ in eq. (B.15), we reproduce precisely the results obtained by setting $N=2$ in eq. (3.19), setting $v_{3}=v_{4}=0$ in both cases.

B.1.1 The fermion contribution

As in the $\mathrm{SU}(N)$ case, the fermion loop contribution to the scalar anomalous dimension results in a contribution of $\Delta \beta_{v_{i}}=8 n_{f} I_{2}(R) v_{i} \alpha_{e}$ to each β-function in eq. (B.15). The 1PI fermion box diagram makes a contribution to the β-functions (appropriately normalised) of the form as eq. (3.26); for the adjoint representation this becomes:

$$
\begin{equation*}
\bar{H}_{i} \Delta \beta_{v_{i}}=\alpha_{e}^{2}\left(-2 b(N-2) \bar{H}_{3}-4 \bar{H}_{4}\right) \tag{B.16}
\end{equation*}
$$

and hence for the complete β-functions including a single two-component fermion in the adjoint representation we have from eq. (B.15):

$$
\begin{align*}
\beta_{v_{1}}= & 8 v_{1}^{2}+2\left(N^{2}-N+2\right) v_{1} v_{2}-4 b(N-2) v_{1} v_{3}+6 b^{2}(N-2)^{2} v_{1} v_{4} \\
& +12 v_{2}^{2}+8 b(N-2) v_{2} v_{3}+8 b^{2}(N-2)^{2} v_{2} v_{4}+16 b^{3}(N-4) v_{3} v_{4} \\
& +20 b^{4}(N-2)(N-4) v_{4}^{2}-12 b(N-2) v_{1} \alpha_{s}+4 b(N-2) v_{1} \alpha_{e} \\
\beta_{v_{2}}= & \left(N^{2}-N+8\right) v_{2}^{2}+12 v_{1} v_{2}-4 b(N-2) v_{2} v_{3}+6 b^{2}(N-2)^{2} v_{2} v_{4} \\
& -8 b^{3}(N-4) v_{3} v_{4}+6 b^{4}(N-2)(N-4) v_{4}^{2} \\
& -12 b(N-2) v_{2} \alpha_{s}+4 b(N-2) v_{2} \alpha_{e} \\
\beta_{v_{3}}= & 4 b(N-2) v_{3}^{2}+12 v_{1} v_{3}-4 v_{2} v_{3}-4 b(N-2) v_{2} v_{4} \\
& +2 b^{2}\left(N^{2}-6 N+20\right) v_{3} v_{4}-4 b^{3}(N-4) v_{4}^{2}-12 b(N-2) v_{3} \alpha_{s} \\
& +4 b(N-2) v_{3} \alpha_{e}-2 b(N-2) \alpha_{e}^{2} \\
\beta_{v_{4}}= & \frac{1}{2} b^{2}\left(3 N^{2}-28 N+140\right) v_{4}^{2}+12 v_{1} v_{4}+20 v_{2} v_{4}-2 v_{3}^{2} \\
& -2 b(N-2) v_{3} v_{4}-12 b(N-2) v_{4} \alpha_{s}+6 \alpha_{s}^{2} \\
& +4 b(N-2) v_{4} \alpha_{e}-4 \alpha_{e}^{2} \tag{B.17}
\end{align*}
$$

when it is once again easy to extract the supersymmetric result by setting $v_{1}=v_{2}=v_{4}=0$ and $v_{3}=\alpha_{e}=\alpha_{s}$.

For a single two-component fermion in the fundamental representation, (and for $N \neq 8$) we find that

$$
\begin{equation*}
\operatorname{Tr}\left[M_{i} M_{j} M_{k} M_{l}\right]=\frac{1}{N-8}\left[-b^{2}\left(P_{1}+P_{2}+P_{3}\right)+b\left(2 P_{4}-P_{5}\right)+P_{6}\right] \tag{B.18}
\end{equation*}
$$

and hence we find for fermions in the fundamental representation a contribution to the β-functions (for n_{f} flavours) of the form

$$
\begin{equation*}
\bar{H}_{i} \Delta \beta_{v_{i}}=\frac{2 n_{f} \alpha_{e}^{2}}{N-8}\left[8 b^{2}\left(\bar{H}_{1}+\bar{H}_{2}\right)-2 b(N-10) \bar{H}_{3}-4 \bar{H}_{4}\right] \tag{B.19}
\end{equation*}
$$

It is straightforward to incorporate these contributions into eq. (B.15) in the same manner.

B. 2 The case $\mathcal{G}=\operatorname{Sp}(N)$

We will here be considering the unitary symplectic group. The generators of $\operatorname{Sp}(N)$ satisfy

$$
\begin{equation*}
J R^{a} J=\left(R^{a}\right)^{T} \tag{B.20}
\end{equation*}
$$

where

$$
J=\left(\begin{array}{cc}
0 & I \tag{B.21}\\
-I & 0
\end{array}\right)
$$

and I is the unit matrix. Evidently N must be even. For the case $N=2$ it is easy to check by explicitly constructing R^{a} to satisfy eq. ($\bar{B} .20$) that $\mathrm{Sp}(2) \equiv \mathrm{SU}(2)$. Another useful check on our calculations will be provided by the isomorphism

$$
\begin{equation*}
\mathrm{SO}(5) \equiv \frac{\mathrm{Sp}(4)}{Z_{2}} \tag{B.22}
\end{equation*}
$$

If we write $N=2 n$, the generators may be written as $L_{\alpha \beta}$, where an infinitesimal group element \mathcal{S} may be written

$$
\begin{equation*}
\mathcal{S}=1+i \sum_{\alpha \beta} a_{\alpha \beta} L_{\alpha \beta} \tag{B.23}
\end{equation*}
$$

where $a_{\alpha \beta}=a_{\beta \alpha}^{*}$ and

$$
\begin{equation*}
L_{\alpha \beta}=L_{-\beta-\alpha}, \quad \alpha, \beta= \pm 1, \pm 2, \cdots \pm n \tag{B.24}
\end{equation*}
$$

(Thus the correspondence $\operatorname{Sp}(2) \sim \mathrm{SU}(2)$ is $L_{11} \sim J_{3}, L_{1-1}, L_{-1,1} \sim J_{ \pm}=J_{1} \pm i J_{2}$.)
They obey the commutation relations

$$
\begin{equation*}
\left[L_{\alpha \beta}, L_{\gamma \delta}\right]=\left(\delta_{\beta \gamma} \delta_{\beta} L_{\alpha \delta}-\delta_{\alpha \delta} \delta_{\alpha} L_{\gamma \beta}+\delta_{\beta \bar{\delta}} \delta_{\beta} L_{\alpha \bar{\gamma}}-\delta_{\alpha \bar{\gamma}} \delta_{\alpha} L_{\bar{\beta} \delta}\right) \tag{B.25}
\end{equation*}
$$

where

$$
\delta_{\alpha}=-\delta_{-\alpha}= \begin{cases}1 & \text { if } \alpha>0 \tag{B.26}\\ -1 & \text { if } \alpha<0\end{cases}
$$

and $\bar{\alpha}=-\alpha$ etc.
We find:

$$
\begin{aligned}
\beta_{v_{1}}= & 8 v_{1}^{2}+2\left(N^{2}+N+2\right) v_{1} v_{2}-2 b(N+2) v_{1} v_{3}+\frac{3}{2} b^{2}(N+2)^{2} v_{1} v_{4} \\
& +12 v_{2}^{2}+4 b(N+2) v_{2} v_{3}+2 b^{2}(N+2)^{2} v_{2} v_{4} \\
& +\frac{5}{4} b^{4}(N+2)(N+4) v_{4}^{2}+2 b^{3}(N+4) v_{3} v_{4}-6 b(N+2) v_{1} \alpha_{s}
\end{aligned}
$$

$$
\begin{align*}
\beta_{v_{2}}= & \left(N^{2}+N+8\right) v_{2}^{2}+12 v_{1} v_{2}-2 b(N+2) v_{2} v_{3}+\frac{3}{2} b^{2}(N+2)^{2} v_{2} v_{4} \\
& -b^{3}(N+4) v_{3} v_{4}+\frac{3}{8} b^{4}(N+2)(N+4) v_{4}^{2}-6 b(N+2) v_{2} \alpha_{s} \\
\beta_{v_{3}}= & 2 b(N+2) v_{3}^{2}+12 v_{1} v_{3}-4 v_{2} v_{3}-2 b(N+2) v_{2} v_{4} \\
& +\frac{1}{2} b^{2}\left(N^{2}+6 N+20\right) v_{3} v_{4}-\frac{1}{2} b^{3}(N+4) v_{4}^{2}-6 b(N+2) v_{3} \alpha_{s} \\
\beta_{v_{4}}= & \frac{1}{8} b^{2}\left(3 N^{2}+28 N+140\right) v_{4}^{2}+12 v_{1} v_{4}+20 v_{2} v_{4}-2 v_{3}^{2} \\
& -b(N+2) v_{3} v_{4}-6 b(N+2) v_{4} \alpha_{s}+6 \alpha_{s}^{2} \tag{B.27}
\end{align*}
$$

Using table 4 in eq. (3.41) leads to the same results.
Setting $N=2, b=1$ and $v_{3}=v_{4}=0$ in eq. (B.27) above we indeed find agreement with the corresponding results for $\mathrm{SU}(2)$, from eq. (3.19).

B.2.1 The fermion contribution

The fermion loop contribution is similar to the the $\mathrm{SO}(N)$ case. From the scalar anomalous dimension we get a contribution of $\Delta \beta_{v_{i}}=8 n_{f} I_{2}(R) v_{i} \alpha_{e}$ to each β-function in eq. (B.27).

In the case of the adjoint representation, by similar algebra to that leading to eq. (3.27), we obtain for the 1PI fermion box diagram a contribution:

$$
\begin{equation*}
\bar{H}_{i} \Delta \beta_{v_{i}}=\alpha_{e}^{2}\left(-b(N+2) \bar{H}_{3}-4 \bar{H}_{4}\right), \tag{B.28}
\end{equation*}
$$

and for the complete β-functions from eq. (B.27):

$$
\begin{align*}
\beta_{v_{1}}= & 8 v_{1}^{2}+2\left(N^{2}+N+2\right) v_{1} v_{2}-2 b(N+2) v_{1} v_{3}+\frac{3}{2} b^{2}(N+2)^{2} v_{1} v_{4} \\
& +12 v_{2}^{2}+4 b(N+2) v_{2} v_{3}+2 b^{2}(N+2)^{2} v_{2} v_{4} \\
& +\frac{5}{4} b^{4}(N+2)(N+4) v_{4}^{2}+2 b^{3}(N+4) v_{3} v_{4}-6 b(N+2) v_{1} \alpha_{s} \\
& +2 b(N+2) v_{1} \alpha_{e}, \\
\beta_{v_{2}}= & \left(N^{2}+N+8\right) v_{2}^{2}+12 v_{1} v_{2}-2 b(N+2) v_{2} v_{3}+\frac{3}{2} b^{2}(N+2)^{2} v_{2} v_{4} \\
& -b^{3}(N+4) v_{3} v_{4}+\frac{3}{8} b^{4}(N+2)(N+4) v_{4}^{2}-6 b(N+2) v_{2} \alpha_{s} \\
& +2 b(N+2) v_{2} \alpha_{e}, \\
\beta_{v_{3}}= & 2 b(N+2) v_{3}^{2}+12 v_{1} v_{3}-4 v_{2} v_{3}-2 b(N+2) v_{2} v_{4} \\
& +\frac{1}{2} b^{2}\left(N^{2}+6 N+20\right) v_{3} v_{4}-\frac{1}{2} b^{3}(N+4) v_{4}^{2}-6 b(N+2) v_{3} \alpha_{s}, \\
& +2 b(N+2) v_{3} \alpha_{e}-b(N+2) \alpha_{e}^{2}, \\
\beta_{v_{4}}= & \frac{1}{8} b^{2}\left(3 N^{2}+28 N+140\right) v_{4}^{2}+12 v_{1} v_{4}+20 v_{2} v_{4}-2 v_{3}^{2} \\
& -b(N+2) v_{3} v_{4}-6 b(N+2) v_{4} \alpha_{s}+6 \alpha_{s}^{2} \\
& +2 b(N+2) v_{4} \alpha_{e}-4 \alpha_{e}^{2}, \tag{B.29}
\end{align*}
$$

when it is once again easy to extract the supersymmetric result by setting $v_{1}=v_{2}=v_{4}=0$ and $v_{3}=\alpha_{e}=\alpha_{s}$. Setting $N=4$ in eq. (B.29) we reproduce precisely the results of setting
$N=5$ in eq. ($\overline{\mathrm{B} .15})$, in accordance with eq. ($\overline{\mathrm{B} .22}$); a good check of our calculation. Also, setting $N=2$ and $v_{3}=v_{4}=0$ in eq. (B.29) we reproduce the results of setting $N=2$ and $v_{3}=v_{4}=0$ in eq. (3.19).

For a single two-component fermion in the fundamental representation, we find (again reverting to a shorthand single index notation)

$$
\begin{equation*}
\operatorname{Tr}\left[L_{\alpha} L_{\beta} L_{\gamma} L_{\delta}\right]=\frac{1}{N+8}\left[-\frac{b^{2}}{4}\left(P_{1}+P_{2}+P_{3}\right)-\frac{b}{2}\left(2 P_{4}-P_{5}\right)+P_{6}\right] \tag{B.30}
\end{equation*}
$$

(where the P-basis is defined in the same way as for $\mathrm{SO}(N)$ in eq. (B.10)) and hence a contribution to the β-functions (for n_{f} flavours) of the form

$$
\begin{equation*}
\bar{H}_{i} \Delta \beta_{v_{i}}=\frac{2 n_{f} \alpha_{e}^{2}}{N+8}\left[2 b^{2}\left(\bar{H}_{1}+\bar{H}_{2}\right)-b(N+10) \bar{H}_{3}-4 \bar{H}_{4}\right] \tag{B.31}
\end{equation*}
$$

It is straightforward to incorporate these contributions into eq. (B.27) in the same manner.
We can also check this result ${ }^{6}$ using the identity $\mathrm{Sp}(2) \equiv \mathrm{SU}(2)$; setting $N=2$ and $b=1$ in eq. (B.31) and using eq. (3.33) we find agreement with the result of setting $N=2$ and using eq. (3.33) in eq. (3.37).

Remarkably, the all β-functions for the $\operatorname{Sp}(N)$ case (including β_{s}, β_{e}) together with γ_{m} can be derived from the corresponding $\mathrm{SO}(N)$ versions by a series of simple substitutions:

$$
\begin{align*}
b & \rightarrow \frac{1}{2} b \\
N & \rightarrow-N \\
\alpha_{s} & \rightarrow-\alpha_{s} \\
\alpha_{e} & \rightarrow-\alpha_{e} \\
v_{3} & \rightarrow-v_{3} \\
n_{f} & \rightarrow-n_{f} \tag{B.32}
\end{align*}
$$

Acknowledgments

One of us (DRTJ) thanks KITP (Santa Barbara) for financial support and hospitality while part of this work was done. PK and LM thank Robert Harlander and Matthias Steinhauser for valuable discussions and explanations. This work was supported by the DFG through SFB/TR 9 and by the National Science Foundation under Grant No. PHY05-51164.

References

[1] R. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Dimensional reduction applied to QCD at three loops, JHEP 09 (2006) 053 hep-ph/0607240.
[2] R.V. Harlander, D.R.T. Jones, P. Kant, L. Mihaila and M. Steinhauser, Four-loop β-function and mass anomalous dimension in dimensional reduction, JHEP 12 (2006) 024 hep-ph/0610206.

[^5][3] W. Siegel, Supersymmetric dimensional regularization via dimensional reduction, Phys. Lett. B 84 (1979) 193.
[4] D.M. Capper, D.R.T. Jones and P. van Nieuwenhuizen, Regularization by dimensional reduction of supersymmetric and nonsupersymmetric gauge theories, Nucl. Phys. B 167 (1980) 479.
[5] I. Jack, D.R.T. Jones and K.L. Roberts, Dimensional reduction in nonsupersymmetric theories, Z. Physik C 62 (1994) 161 hep-ph/9310301.
[6] I. Jack, D.R.T. Jones and A. Pickering, The connection between the DRED and NSVZ renormalisation schemes, Phys. Lett. B 435 (1998) 61 hep-ph/9805482.
[7] I. Jack, D.R.T. Jones and C.G. North, Scheme dependence and the NSVZ β-function, Nucl. Phys. B 486 (1997) 479 hep-ph/9609325.
[8] I. Jack and D.R.T. Jones, The gaugino β-function, Phys. Lett. B 415 (1997) 383 hep-ph/9709364.
[9] J. Hisano and M.A. Shifman, Exact results for soft supersymmetry breaking parameters in supersymmetric gauge theories, Phys. Rev. D 56 (1997) 5475 hep-ph/9705417.
[10] Y. Yamada, Two loop renormalization group equations for soft SUSY breaking scalar interactions: supergraph method, Phys. Rev. D 50 (1994) 3537 (hep-ph/9401241.
[11] P. Cvitanovic, Group theory for feynman diagrams in nonabelian gauge theories: exceptional groups, Phys. Rev. D 14 (1976) 1536.
[12] A.J. MacFarlane, A. Sudbery and P.H. Weisz, On Gell-Mann's γ matrices, D tensors and F tensors, octets and parametrizations of $\mathrm{SU}(3)$, Commun. Math. Phys. 11 (1968) 77.
[13] P. Dittner, Invariant tensors in $\mathrm{SU}(3)$. 2, Commun. Math. Phys. 27 (1972) 44.
[14] M.A. Rashid and Saifuddin, Identity satisfied by the D-type coefficients of $\operatorname{SU}(N)$, J. Math. Phys. 14 (1973) 630.
[15] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279.
[16] T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, hep-ph/9905298.
[17] R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of $O\left(\alpha \alpha_{s}\right)$ to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 hep-ph/9712228.
[18] S.A. Larin, F.V. Tkachov and J.A.M. Vermaseren, The FORM version of MINCER, NIKHEF-H-91-18.
[19] Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two-loop QCD amplitudes and coupling shifts, Phys. Rev. D 66 (2002) 085002 hep-ph/0202271.
[20] T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four-loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 hep-ph/9701390.
[21] K.G. Chetyrkin, Quark mass anomalous dimension to $O\left(\alpha_{s}^{4}\right)$, Phys. Lett. B 404 (1997) 161 hep-ph/9703278.
[22] J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The 4-loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 hep-ph/9703284.
[23] M. Czakon, The four-loop $Q C D \beta$-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 hep-ph/0411261.
[24] D.R.T. Jones, More on the axial anomaly in supersymmetric Yang-Mills theory, Phys. Lett. B 123 (1983) 45.
[25] V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Instanton effects in supersymmetric theories, Nucl. Phys. B 229 (1983) 407.
[26] N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 hep-th/0405159;
G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] hep-ph/0406088.
[27] R.V. Harlander, L. Mihaila and M. Steinhauser, Running of α_{s} and m_{b} in the MSSM, arXiv:0706.2953.
[28] T. van Ritbergen, A.N. Schellekens and J.A.M. Vermaseren, Group theory factors for feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 hep-ph/9802376.

[^0]: ${ }^{1}$ Since ε-scalars are present only on internal lines we could, in fact, choose the wave function renormalisation of W_{σ} and W_{i} to be the same; or, indeed, have no wave function renormalisation for W_{σ} at all. The crucial thing is correct treatment of sub-graphs, which means recognition that vertices with ε-scalars renormalise in a different way from their gauge counterparts. However, we choose to renormalise the ε-scalar conventionally.

[^1]: ${ }^{2}$ An alternative way to define a basis which has the virtue of being immediately generalisable to any group 11 is in terms of traces of products of the generators in the defining representation, thus $\operatorname{Tr}\left(T^{a} T^{b} T^{c} T^{d}\right), \operatorname{Tr}\left(T^{a} T^{b}\right) \operatorname{Tr}\left(T^{c} T^{d}\right)$ etc.

[^2]: ${ }^{3}$ Here and for the rest of this section we suppress a factor of $1 / 8 \pi^{2}$ in every one-loop β-function.

[^3]: ${ }^{4}$ Useful sources for some of the material in this section have included refs. $11,20,28$.

[^4]: ${ }^{5}$ As will become clear our results will not be applicable to the special case $N=8$, which we will not consider further

[^5]: ${ }^{6}$ Of course we cannot use eq. B.22 as a check here because the fundamental representation is different for the two groups.

